ICMCUSP UNIVERSIDADE DE SAO PAULO

SAO CARLOS Instituto de Ciéncias Matematicas e de Computacao
Departamento de Sistemas de Computacao

Interface de controle de navegacao de robd para

presenca remota em museu

Murilo Luz Stucki

Sao Carlos - SP

Interface de controle de navegacao de robo para presenca

remota em museu

Murilo Luz Stucki

Orientador: Eduardo do Valle Simoes

Monografia referente ao projeto de conclusdo de curso
dentro do escopo da disciplina SSC0670 — Projeto de
Formatura 1 do Departamento de Sistemas de
Computagdo do Instituto de Ciéncias Matematicas ¢ de
Computagdo — ICMC-USP para obtengao do titulo de

Engenheiro de Computacao.

Area de Concentragdo: Engenharia de Software para
Controle de Robds Moveis

USP - Sao Carlos
23 de Novembro de 2021

“Ndo é nossa fungdo controlar
todas as marés do mundo, mas
sim fazer o que pudermos para
socorrer os tempos em que
estamos inseridos” - Gandalf,

O Branco.

(J. R. R. Tolkien)

Agradecimentos

Agradeco a minha familia, colegas, irmaos e todos aqueles que acreditaram no meu
potencial e me motivaram a chegar até aqui, a todos que ofereceram-me suporte nos

momentos mais dificeis e de duvida da minha vida.

RESUMO

Diante de um cenario de pandemia e escassez de recursos, o maior desafio na
administracdo de museus e espagos culturais ¢ a manuten¢do do seu funcionamento perante
medidas de distanciamento social. Este trabalho explora uma das soluc¢des que surgiu dentro
do Instituto de Ciéncias Matemadticas e de Computacdo (ICMC) para ressignificar o papel do
seu Museu de Computagao durante a pandemia, a solugdo, que levou o nome de Robé Museu,
se trata da implementagdo de um sistema robotico para a realiza¢do de visitas remotas ao
museu. Neste trabalho € proposta e implementada uma arquitetura para o sistema de interface
web para o projeto Robo Museu, utilizando-se as tecnologias mais recomendadas para a area
de telepresenga robotica. Foi desenvolvida uma aplicacdo Node.js utilizando a tecnologia
WebRTC (Web Real Time Communication), a aplicagdo serve duas paginas HTML diferentes,
uma para os usudrios visitantes, e outra para um computador que servira de interface entre a
Internet € o microcontrolador do robd. A aplicagdo foi testada utilizando um servidor NGINX
no endereco ‘https://principia.icmc.usp.br/robo-museu/’. Os testes realizados mostram que a
aplicacdo ¢ capaz de conectar em tempo real os usuarios com a interface e transmitir um fluxo
de video/audio da interface para multiplos usudrios. A aplicagdo também ¢ capaz de transmitir
um fluxo de comandos de um usuario principal para a interface, que por sua vez transmite

estes comandos para o endereco IP do microcontrolador do robd conectado a rede Wi-Fi.

SUMARIO

CAPITULO 1: INTRODUCAO
1.1. Contextualizagao e Motivacao
1.2. Objetivos
1.3. Organizagado do Trabalho

CAPITULO 2: REVISAO BIBLIOGRAFICA
2.1. Consideragdes iniciais
2.2. Telepresenga e Teleoperagao Robotica
2.3. Técnicas de Transmissao de Dados pela Internet
2.3.1. HTTP/HTTPS
2.3.2. WebSockets
2.3.3. Peer-to-Peer e ICE
2.3.4. STUN e TURN
2.4. Bibliotecas e Softwares de Codigo Aberto
2.4.1. NGINX
2.4.2. Node.js
2.4.3. Socket.IO
2.4.4. WebRTC
2.5. Consideragdes Finais

CAPITULO 3: DESENVOLVIMENTO DA INTERFACE DE CONEXAO COM O
ROBO

3.1. Considerag¢des iniciais

3.2. Projeto

3.3. Desenvolvimento da Interface Proposta
3.3.1. Defini¢do da Arquitetura e das Tecnologias
3.3.2. Configuracao do Servidor Web
3.3.3. Implementacao da Aplicagdo Node.js

3.4. Dificuldades e Limitagdes

3.5. Consideragdes Finais

CAPITULO 4: CONCLUSAO
4.1. Contribuigdes
4.2. Consideragoes sobre o Curso de Graduagao
4.3. Trabalhos Futuros

REFERENCIAS

10
10

11
11
11
13
13
14
14
15
17
17
17
18
18
19

20
20
20
21
21
23
25
29
30

31
31
32
33

34

CAPITULO 1: INTRODUCAO

1.1. Contextualizacao e Motivacao

A pandemia da Covid-19 impactou negativamente toda a sociedade mundial, o setor
cultural ndo foi excegdo, a crise afetou a maioria das pessoas e das organizagdes que
trabalham neste setor, como aponta uma pesquisa da UNESCO (UNESCO, 2020). Entre os
problemas causados estava a impossibilidade de realizar visitas a museus, galerias, teatros e
outros espagos importantes para a sociedade por mais de um ano, e durante este periodo
muitas ideias surgiram para ajudar a manuten¢do destes espagos, inclusive dentro do Instituto
de Ciéncias Matematicas e de Computagao (ICMC) da Universidade de Sao Paulo (USP)
surgiram algumas ideias para serem implementadas no Museu de Computagdo', uma delas foi
a de construir um robd que possa ser controlado remotamente e filme o ambiente a sua volta,
para que usudrios assistam essas imagens em tempo real e sintam-se livres para explorar o
ambiente.

Rapidamente foi reconhecido o potencial do projeto do robd de acesso remoto, a ideia
transformou-se em utilizar o robo para que escolas publicas e outras institui¢des de ensino
pudessem fazer visitas remotamente em espagos de interesse da escola, principalmente
espagos em que a visita presencial ¢ inviavel. Portanto o objetivo do projeto intitulado Robo
Museu’ tornou-se desenvolver um robd moével junto a uma plataforma de controle remoto, que
possa ser facilmente replicada e implementada por outras institui¢des, de forma a facilitar o
acesso remoto do publico aos espacos de cultura, além de influenciar ativamente que alunos
de escola publica se interessem mais por atividades culturais e ensinar sobre tecnologia e
robotica. Este trabalho terd como foco a plataforma web que sera usada para controlar o robd,
contribuindo com um prototipo para testes iniciais do robd, e até como base para futuras
implementagdes.

Para que uma experiéncia de telepresenca seja eficaz ela precisa transmitir a sensagao
do usuario de estar em um ambiente diferente (MINSKY, M., 1980), a vantagem de utilizar
rob0s moveis para esta tarefa, além das cameras e microfones, ¢ dar ao usudrio remoto a
possibilidade de se mover e interagir fisicamente com o ambiente por meio do robd

(KRISTOFFERSSON et al., 2013). Atualmente, a area de telepresenca robotica cresce

' "Museu de Computagdo Prof. Odelar Leite Linhares", https://mc.icmc.usp.br/.
2 Repositorio Robd Museu por Eduardo do Valle Simdes, https://gitlab.com/simoesusp/robo-museu.

https://gitlab.com/simoesusp/robo-museu
https://mc.icmc.usp.br/

rapidamente, e existem muitos exemplos de robds para usos comerciais € também nao
comerciais. Um exemplo ¢ o uso de telepresenca robética para auxiliar pessoas com
deficiéncias locomotoras (MARAFA, N. A.; FILHO, W. B. V., 2019), e como grande parte
dos trabalhos atuais na area ele utiliza a API (Application Programming Interface) para
comunica¢do em tempo real entre navegadores chamada WebRTC® (Web Real Time
Communication), Singh et al. (2013) produziram um artigo de analise da performance do
WebRTC e seus algoritmos de controle de congestao, e nos testes obtiveram laténcias de no
maximo 1 segundo para conexdes congestionadas. Este trabalho faz uso de tecnologias atuais
ja utilizadas na 4rea para a criagdo de uma interface web de telepresenca robotica
(MELENDEZ-FERNANDEZ et al, 2017), a diferenga estd em dois pontos, apresentados a
seguir, que derivam do caso especifico em que se encontra o projeto do Robé Museu, e os
tipos de uso intencionados pelos seus idealizadores.

1. Criar uma aplicagdo na qual seja possivel mais de um usudrio remoto assistir a
transmissao do robdé ao mesmo tempo, mas garantir que apenas um usuario
(usuario principal) possa mandar comandos para o robd. A defini¢do do
usuario principal poderd ser feita por meio de um sistema de cadastro e
agendamento de horario.

2. Reduzir a0 méximo a interagdo humana necessaria localmente apds a
instalag@o, no robd e no computador servindo de transmissor. Permitindo que
apds o sistema estar devidamente instalado, um usudrio remoto consiga
estabelecer uma conexdo com o robd sem o auxilio de uma pessoa no local.

O primeiro ponto tem o intuito de aumentar o potencial uso educacional do sistema,
possibilitando por exemplo que uma classe de alunos em aulas remotas possam assistir a
transmissao juntos enquanto o professor controla o robd, ou também que usudrios nao
principais possam assistir a visita de um usudrio principal em horarios muito requisitados,
otimizando assim o uso do robd e melhorando a experiéncia do usuério. O segundo ponto visa
facilitar a manutencdo do sistema pela instituicao, reduzindo a necessidade de treinar e alocar
funcionarios para operar o robo. E para o usudrio visa diminuir o tempo necessario para
estabelecer a conexdao com o robo. Tendo em vista os pontos apresentados, este trabalho
podera contribuir com uma forma de implementacdo de telepresenga robotica que melhor
atende a demanda de um espaco cultural, como um museu, estudar as técnicas e os desafios e

fomentar o debate acerca da area de telepresenca robotica.

3 "WebRTC." https://webrtc.org/. Acessado em 23 nov.. 2021.

https://webrtc.org/

1.2. Objetivos

O objetivo deste trabalho ¢ desenvolver uma aplicacdo web de codigo aberto,
utilizando tecnologias Open Source* e com performance adequada as necessidades do projeto
Robo Museu, como Node.js’, NGINX®, WebRTC e HTML'. Esta aplicagdo deve ser capaz de
servir de interface entre um usudrio inexperiente € um robd movel. O intuito principal é o
usudrio conseguir, de forma confortavel e sem possuir conhecimento basico sobre robotica ou
computagdo, interagir com o robo e fazé-lo navegar por um espago, enquanto o robd captura
imagens do ambiente e as transmite para o usudrio em tempo real. A comunicagdo deve ser
feita de forma simples e com a menor laténcia possivel entre o envio dos comandos e a
alteracdo da imagem na tela do usudrio, isso para garantir uma melhor imersao para a pessoa
que estd visitando o espago por telepresenga. Uma condigdo de sucesso baseado na laténcia
seria obter um numero menor que 2 segundos, se aproximando dos resultados do trabalho de

Singh et al. (2013).

1.3. Organizac¢ao do Trabalho

A organizacao deste trabalho consiste de 4 capitulos, sendo este o primeiro. O segundo
capitulo, REVISAO BIBLIOGRAFICA, apresentaré revisdes da terminologia bésica da érea,
explicagdes sobre as bibliotecas e projetos de codigo aberto relevantes e a literatura
relacionada a este projeto. No terceiro capitulo, DESENVOLVIMENTO DO TRABALHO, o
projeto sera discutido em detalhes, serdo apresentadas motivacoes de todas as escolhas feitas,
assim como a execugdo e os resultados do trabalho. Por fim, no quarto capitulo,
CONCLUSAO, serdo apresentadas as contribui¢des, os erros cometidos e outras conclusdes
finais que o autor deste trabalho pode alcangar a partir dos resultados obtidos. Todas as etapas
deste trabalho foram realizadas a distancia pelo autor e seu orientador, o Prof. Eduardo do
Valle Simdes, € sem a possibilidade de testar o sistema em situagdes reais, os resultados se
limitam aos obtidos em simulagdes. Os testes restantes, como o de integracdo com os outros
componentes do Robd Museu, poderdo ser feitos futuramente quando todos os componentes
estiverem em etapas finais de desenvolvimento. Assim serdo sugeridos 0s proximos passos €

trabalhos futuros que poderdo ser derivados deste e também, ao final, feitas algumas

* "The Open Source Definition", https://opensource.org/docs/osd.
> "Node.js.", https://nodejs.org/en/about/.

¢ "NGINX.", https:/nginx.org/en/.
""HTML Standard", https://html.spec.whatwg.org/multipage/.

10

https://html.spec.whatwg.org/multipage/
https://nginx.org/en/
https://nodejs.org/en/about/
https://opensource.org/docs/osd

consideragdes sobre o curso de graduacdo no qual o autor estd atualmente matriculado a partir
de sua visdo pessoal, e sobre a relacdo deste trabalho com o curso e o que foi aprendido

durante o desenvolvimento do projeto.

CAPITULO 2: REVISAO BIBLIOGRAFICA

2.1. Consideracoes iniciais

Neste capitulo serdo apresentadas revisdes da literatura existente relacionada a area de
telepresencga robotica, conceitos e técnicas avaliados durante o desenvolvimento do trabalho,
terminologias importantes para a compreensao deste projeto e a metodologia adotada para a
implementagdo do sistema. S3o apresentadas explicacdes das funcionalidades das bibliotecas
de codigo aberto mais importantes e também sobre as ferramentas Open Source empregadas

na solucdo apresentada neste trabalho.

2.2. Telepresenca e Teleoperacao Robotica

O termo teleoperacdo, traduzido do inglés teleoperation, ¢ o nome dado a qualquer
tipo de operagdo realizada em uma maquina por um controlador remoto, pode ser tdo simples
quanto mudar o canal em uma televisdo com um controle remoto, ou mais complexa como
controlar um robd na superficie de Marte a partir de uma estagao espacial na 6rbita do planeta
(SCHILLING et al.,, 1997). Atenta-se para o fato de que o termo teleoperagdo ndo
necessariamente tem ligagdo com a robotica, apenas quando a maquina controlada se trata de
um sistema robotico, por este motivo ¢ comum encontrar definigdes deste termo como a area
que engloba outros topicos como a telepresenga e a telerobdtica, este ultimo foi definido por
T. B. Sheridan (1989) como tratando-se da teleoperacdo usada em sistemas robodticos
semi-autonomos, dotados de sensores e inteligéncia artificial para realizar tarefas informadas
por um supervisor remoto. A partir da andlise da Figura 1 nota-se a semelhanga entre o
conceito de telerobotica, apresentado por T. B. Sheridan, e a descricao do uso do projeto Robd

Museu, sendo a Internet a barreira entre o controlador € o robd. Ndo coincidentemente este

11

trabalho esta inserido na area da telerobodtica, ¢ faz uso tanto de conceitos derivados da

telepresenca.

Figura 1: Conceito de Telerobotica

SUPERVISORY DISPLAYS

AND LOCAL
o0PS
—©m]: “ S BARRIER o
\ . /
[\ _ /
LOCAL} 1
Loor) : yLOOP
F) . : \
; e N
/ _BARRIER N
LOCAL REMOTE
COMPUTER COMPUTER EFFECTORS

Fonte: T. B. SHERIDAN, Telerobotics (1989)

O termo telepresenca, traduzido do inglés telepresence, nao ¢ tao bem definido quanto
os apresentados anteriormente e pode ser encontrado em diversas areas académicas com
significados variados. Na area de foco deste trabalho, a roboética, € usado com o significado de
transmitir a sensagdo de estar em outro ambiente com o auxilio de robds, e foi popularizado
por Marvin Minsky em 1980, e em seu artigo ele descreve a telepresenca como uma evolugao
da teleoperagdo, de forma que ao passo em que as tecnologias de controle remoto avangam,
mais imersivos seus sistemas se tornam. Segundo Minsky (1980), esse deve ser o objetivo da
area de teleoperacdes para que possam resolver problemas atuais de tarefas que pdem em
risco o trabalhador que poderdo ser feitas por robds usando a telepresenca, ¢ até trabalhos
comuns poderiam ser feitos remotamente, eliminando a necessidade de locomogdo do
trabalhador e que criaria um mercado mais livre. A tecnologia e 0 mundo evoluiram diferente
do que Minsky previu a 40 anos atrds, mas parte do que foi dito por ele ¢ valido também nos
dias de hoje, e podemos dizer que o modelo de economia remota estda comegando a tomar
forma e mudangas na area estdo acontecendo rapidamente. A discussdo sobre os impactos
positivos e negativos no trabalho e nas relagdes humanas causados pelos avancos da
telepresenca foi iniciada por Minsky e outros académicos da época e continua até hoje,
ganhando maior importancia a cada dia (DONNELLY, R.; JOHNS, J. 2021). O projeto
descrito neste trabalho faz uso do conceito de telepresenga na tentativa de desenvolver uma
interface imersiva, dentro das limitacdes do robd e da conexdo que serdo utilizadas no projeto

final do Rob6 Museu.

12

2.3. Técnicas de Transmissdo de Dados pela Internet

A Internet tornou- se uma ferramenta indispensavel para a sociedade atual, pela qual é
possivel compartilhar informagdes entre computadores no mundo todo conectados a rede
global, utilizando uma colecdo de protocolos TCP/IP. Os protocolos definem as regras gerais
de comunicagdo entre dois computadores ou processos interligados pela rede, assim garantem
que eles “falem a mesma lingua” e consigam processar corretamente os dados recebidos pela
conexdo (ELIAS, G.; LOBATO, L. C. 2013, p. 56-62). Os protocolos da familia TCP/IP sdao
divididos por funcionalidade entre 4 camadas de abstra¢do, Aplicagdo, Transporte, Rede e
Interface de Rede. Para este trabalho sdo utilizados protocolos dentro da familia TCP/IP que
garantem baixa laténcia na transmissdo dos dados e que sdo reconhecidos pela maioria dos
navegadores de uso comum, como Google Chrome, Firefox, Safari, etc. Os protocolos mais

importantes para o entendimento do trabalho sdo descritos nos subtdpicos a seguir.

2.3.1. HTTP/HTTPS

Hypertext Transfer Protocol (HTTP)® é um protocolo utilizado para transmissio de
documentos chamados de Hypermedia, como por exemplo paginas HTML, imagens e
arquivos JavaScript. Basicamente ele segue o modelo cliente-servidor, no qual o cliente abre
uma conexdo e envia uma requisi¢ao para o servidor. O servidor, entdo, envia uma resposta
com os arquivos requisitados pelo cliente ou com uma mensagem de erro (ELIAS, G.;
LOBATO, L. C. 2013, p. 377). Utilizando um navegador para fazer as requisi¢des, 0 usudrio
vera os arquivos de resposta apresentados em uma interface amigavel que esconde toda a
troca de mensagens com o servidor e processos internos necessarios para exibir certos
arquivos corretamente, como codigos HTML (GARSIEL, T.; IRISH, P., 2011).

HyperText Transfer Protocol Secure (HTTPS)® é basicamente a versdo criptografada
do protocolo HTTP e utiliza protocolos de seguranga de camada de transporte, o SSL ou o
TLS, proporcionando uma conexdo segura entre cliente e servidor, atualmente a seguranca de
dados ¢ um topico muito discutido e se torna cada dia mais importante, a0 passo que as
pessoas estdo cada vez mais conectadas, por conta disso a maioria dos sites estdo adotando o

protocolo HTTPS ao invés do HTTP (DURUMERIC, Z. et al., 2013).

S "HTTP - MDN Web Docs." https://developer.mozilla.org/en-US/docs/Web/HTTP/.
9 "HTTPS - Glossario - MDN Web Docs." https://developer.mozilla.org/pt-BR/docs/Glossary/https.

13

https://developer.mozilla.org/pt-BR/docs/Glossary/https
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview

2.3.2. WebSockets

Utilizando os protocolos HTTP/HTTPS para fazer a comunicacdo entre cliente e
servidor ¢ sempre necessario que o cliente envie uma requisi¢ao para o servidor para que ele
possa receber uma resposta, mas para aplicagdes que necessitam de uma resposta do servidor
em tempo real essa configuragdo ndo é a ideal. O protocolo WebSocket" foi desenvolvido
para estes casos. Ele permite estabelecer uma comunicagdo bidirecional entre o cliente e o
servidor por uma unica conexao TCP/IP. O cliente envia uma requisicado HTTP/HTTPS com o
cabecalho UPGRADE, se o servidor oferecer suporte para o WebSocket ele envia uma
resposta com “101 Switching Protocols”, dessa forma a conexao full-duplex ¢ estabelecida e
ambos podem enviar mensagens por esta conexdo a qualquer momento alterando os
protocolos HTTP/HTTPS para o WebSocket, até que um dos lados feche a conexdo. Dessa
forma, em uma aplicagdo web em que sdo necessarios envios constantes de dados ou
atualizagdes em tempo real, o cliente ndo precisa enviar requisi¢cdes para o servidor para obter
esses dados, o servidor pode simplesmente enviar a mensagem quando houver necessidade

(IETF, 2011).

2.3.3. Peer-to-Peer e ICE

Para uma aplicacdo que necessita a transferéncia de dados com baixa laténcia entre
dois clientes, utilizar um servidor central para repassar os dados usando o modelo
cliente-servidor pode ser muito lento e custar muitos recursos do servidor, nestes casos, €
como ¢ o caso deste projeto, uma opg¢ao ¢ usar o modelo peer-to-peer, ou seja, fazer com o
que os clientes estabelecam uma conexdo direta entre eles sem utilizar um servidor para
repassar os dados. Desta forma os clientes, que agora serdo chamados de peers, enviam os
dados diretamente para o enderegco um do outro (SHIRKY, C. 2000).

Um dos problemas da conex@o peer-to-peer € garantir a seguranga ¢ a confianca dos
dados, por conta disso, atualmente, a maioria dos roteadores de redes privadas dificulta
conexoes desse tipo entre maquinas locais € maquinas fora da rede privada, por conta de um
método chamado network address translators (NATs), que altera o endereco IP da maquina
local para o enderego IP publico do roteador, e entdo todos os dados enderecados para a rede

privada sdo controlados pelo roteador que retransmite para o enderego IP local correto, assim

10 "WebSocket — Wikipédia, a enciclopédia livre." https://pt.wikipedia.org/wiki/WebSocket. Acessado
em 23 nov.. 2021.

14

https://pt.wikipedia.org/wiki/WebSocket

o endereco privado interno das maquinas da rede ndo ¢ exposto (ELIAS, G.; LOBATO, L. C.
2013, p. 137). Como um peer dentro de uma rede privada nio tem acesso ao endereco publico
da sua rede, ele nao consegue informar ao outro peer fora da rede seu endereco correto para
estabelecer a conexao direta. Para solucionar este problema e também o problema de firewalls
que bloqueiam este tipo de conexdo com peers ndo confidveis, foi criada a técnica chamada
Interactive Connectivity Establishment (ICE), que utiliza os protocolos Session Traversal
Utilities for NAT (STUN) e Traversal Using Relays around NAT (TURN) para contornar as
barreiras criadas por redes privadas (IETF, 2018).

2.3.4. STUN e TURN

Session Traversal Utilities for NAT (STUN) € um protocolo cliente-servidor em que o
cliente, dentro de uma rede privada, envia uma requisi¢ao para o servidor na rede publica que
oferece o servigco de STUN, chamado de STUN Server, e entdo o servidor envia uma resposta
contendo informagdes sobre o tipo de NAT que a rede privada do cliente utiliza, o enderego de
IP e a porta publicos utilizados pelo NAT de sua rede que aceitem uma conexao peer-to-peer
(NTWG, 2008). Em posse dessa informagdo sobre si mesmo, o cliente pode seguir o
protocolo ICE e enviar esta informagdo como uma ‘oferta’ para uma outra maquina que
deseja-se estabelecer uma conexao peer-to-peer, este outro peer entdo deve utilizar o STUN
da mesma forma e enviar uma ‘resposta’ de volta para o peer inicial com as informagdes
sobre ele obtidas pelo STUN, e por fim cada peer podera utilizar a informagdo recebida do
seu par para estabelecerem a conexao. A forma como a ‘oferta’ e a ‘resposta’ sdo trocadas nao
¢ especificada pelo protocolo ICE, mas a recomendacao ¢ fazer esta troca de maneira segura e
criptografada, em muitas aplicagdes ¢ utilizado um servidor web confidvel para transmitir
estas informacdes.

Existem casos em que somente o STUN nao ¢ suficiente para contornar o NAT de
algumas redes, um dos exemplos ¢ quando o NAT altera o mapeamento dos enderecos locais
da rede privada dependendo do enderego do remetente da mensagem, e se o endereco do
remetente esta presente na sua tabela interna de enderecos confiaveis (SRISURESH, P. et al.,
2008, p. 4). Nestes casos ¢ utilizado o protocolo Traversal Using Relays around NAT
(TURN), ele define o uso de servidores intermediarios, chamados de TURN Servers, que irdo
retransmitir a conex@o entre os peers. Um peer que deseja utilizar um TURN Server deve
enviar uma requisi¢do para o servidor que disponibiliza esse servico, e entdo o servidor ira

responder com uma tupla, enderego de IP e porta, que o servidor deixara disponivel para a

15

conexao peer-to-peer, esta tupla que serd repassada para o outro peer como ‘oferta’ ou
‘resposta’, junto com outras informagdes definidas pelo protocolo ICE. Por fim, quando o
outro peer enviar alguma mensagem pela conexao, ele enviara a mensagem para o TURN

Server que entdo repassard a mensagem para o endereco do outro peer (IETF, 2010).

Figura 2: Exemplo de uso de STUN e TURN

LA NAT

A
STUN Server \Dala

Data

STUN Server /
Data
' | A\

{= o

-

!

. TURN
e Server

NAT

]

—

Fonte: GUNAY MERT KARADOGAN, Evaluating WebSocket and WebRTC in the Context of a
Mobile Internet of Things Gateway (2013).

A Figura 2 apresenta um exemplo esquematico de como funcionam o STUN Server e
o TURN Server, ressaltando que os peers podem utilizar servidores de STUN diferentes e
como o servidor de TURN se encaixa entre a conexao dos peers. Utilizar servidores de TURN
pode acabar diminuindo o valor da principal vantagem de se utilizar uma conexao
peer-to-peer, que seria a reducdo da laténcia por ndo utilizar um intermediario, por conta
disso que o protocolo ICE define pardmetros para que s seja utilizado o TURN caso o

método com STUN ndo funcione.

16

2.4. Bibliotecas e Softwares de Codigo Aberto

Durante o processo de desenvolvimento deste trabalho, algumas bibliotecas e
ferramentas de software foram utilizadas para auxiliar na obtencdo da aplicacao final com
todos os requisitos necessarios. As mais importantes para a solucdo obtida serdo apresentadas
nessa secdo, o resto dos softwares utilizados serdo discutidos brevemente no Capitulo 3. Os
softwares aqui apresentados auxiliam na implementagdo dos aspectos chave da aplicacao

apresentados nas segdes anteriores.

2.4.1. NGINX

NGINX" é um servidor HTTP gratuito e de cédigo aberto, que também pode atuar
como um servidor de proxy reverso, que ¢ quando um servidor ¢ usado para retransmitir
requisi¢des de clientes para outros servidores, muito usado por grandes websites para
balancear a carga dos servidores. O servidor NGINX utiliza uma arquitetura assincrona
baseada em eventos, o que o torna uma solugdo escalavel até para grandes websites com
muito trafego, como por exemplo Netflix'?, Hulu" e Pinterest'. O servidor NGINX é um
software gratuito, Open Source e estd entre os servidores web mais populares segundo
pesquisa mensal feita por NETCRAFT (2021), além de ser mais responsivo e escalavel do

que seu maior competidor, o Apache Web Server'®, segundo PRAKASH et al. (2015).

2.4.2. Node.js

Node.js'® é um software de codigo aberto e multiplataforma que define a si proprio
como um ambiente de execucao de codigos JavaScript, ele foi introduzido em 2009 e desde
entdo ganhou popularidade para uso em aplicagdes server-side por sua velocidade,
simplicidade e natureza assincrona. O Node.js usa como base a maquina virtual Google
Chrome V8'7 para compilar o codigo JavaScript, € a maior diferenga de sua arquitetura para
outras tecnologias ¢ o fato de executar o cédigo em single-thread e ser event-driven, ou seja,
ele utiliza uma unica thread para executar todas as requisi¢des, € cada requisicao € tratada

como um evento ndo-bloqueante. Outras tecnologias para 0 mesmo uso sao multi-thread. 1sso

"NGINX Wiki" https://www.nginx.com/resources/wiki/.

12 "Netflix" https://www.netflix.com/br/.

B3 "Hulu" https://www.hulu.com/.

14 "Pinterest - Brasil." https:/br.pinterest.com/.

!5 "The Apache HTTP Server Project." https:/httpd.apache.org/.

' "node/README.md - GitHub." https://github.com/nodejs/node/blob/master/README.md.
17 "y8 JavaScript engine." https://v8.dev/docs.

17

https://v8.dev/docs
https://github.com/nodejs/node/blob/master/README.md
https://httpd.apache.org/
https://br.pinterest.com/
https://www.hulu.com/
https://www.netflix.com/br/
https://www.nginx.com/resources/wiki/

significa que a cada nova requisicdo uma nova thread ¢ criada no servidor, consumindo mais
recursos (CHANIOTIS, L. K., 2015).

O Node.js também ¢ amplamente utilizado por desenvolvedores web por utilizar a
linguagem JavaScript, que também ¢ a linguagem padrdo utilizada por aplicagdes web no
client-side e pode ser carregada em arquivos HTML, por conta disso a maioria dos
desenvolvedores da area ja possui familiaridade com a linguagem, o que também simplifica o
desenvolvimento da aplicagdo, possibilitando o uso da mesma linguagem tanto no frontend
quanto no backend. Outra vantagem do Node.js € o seu gerenciador de pacotes Node Package
Manager (NPM)", que além de gerenciar todos os multiplos pacotes de software que uma
aplicacdo Node.js pode utilizar simultaneamente, o NPM também possui o maior repositorio

de software do mundo, com mais de 1 milhdo de pacotes de codigo aberto.

2.4.3. Socket. 1O

Socket.IO ¢ uma biblioteca de codigo aberto presente no repositério do NPM que
simplifica 0 uso do protocolo WebSockets entre cliente e servidor utilizando Node.js. Esta
biblioteca também oferece suporte para falhas na conexdo WebSocket, substituindo o
protocolo automaticamente para um HTTP long polling caso a conexdo por meio do
WebSocket ndo consiga ser estabelecida. Além disso, a Socket.IO permite que o cliente tente
se reconectar automaticamente caso a conexao seja perdida. Estas caracteristicas trazem
confiabilidade para o software, além de simplificar o cdédigo da aplicacao (KARADOGAN, G.
M. 2013, p. 19).

2.4.4. WebRTC

Web Real-Time Communication (WebRTC) ¢ um projeto open source com o proposito
de possibilitar o desenvolvimento de aplicagdes em tempo real de qualidade em navegadores e
plataformas moéveis, e também definir protocolos padrdes para a comunicagdo. E uma
tecnologia ja utilizada na 4rea da telepresenga robdtica com sucesso
(MELENDEZ-FERNANDEZ et al, 2017). Ele permite a troca de dados em tempo real por
canais especificos de 4udio, video e mensagens, utilizando conexdes peer-to-peer
estabelecidas pelo protocolo ICE. O WebRTC utiliza Interfaces de Programagao de Aplicagdo
(APIs) para gerenciar a conexdo peer-to-peer. (i) fazendo a escolha das técnicas mais

adequadas para fazer a conexao, como UDP ou TCP, usar ou ndo um TURN Server, entre

'8 "npm." https://www.npmjs.com/.

18

https://www.npmjs.com/

outras, dependendo da configuragdo de cada peer; (ii) obtendo os fluxos de dados de audio e
video de cada usuario pelos navegadores; (iii) criando e gerenciando os diversos canais de
dados dentro da conexdo para os fluxos de audio e de video e canais de dados arbitrarios,
estes chamados de Data Channels (W3C, 2021).
Figura 3: Arquitetura do WebRTC
PeerZ2Peer Session

Data, Video and Audio
P ' P
= < > =

Signalling Signalling

&3
Fonte: GUNAY MERT KARADOGAN, Evaluating WebSocket and WebRTC in the Context of a
Mobile Internet of Things Gateway (2013).

A Figura 3 ilustra a arquitetura usual de uma aplicagdo utilizando WebRTC, os dois
peers necessitam de um servidor central para fazerem a sinalizagdo, que se trata basicamente
da troca das informagdes descritas nos protocolos ICE, STUN e TURN necessarias para
estabelecer a conexdo peer-to-peer. Um importante ponto para este trabalho ¢ que o WebRTC
também suporta arquiteturas de comunicagao diferentes da um-para-um, como a
um-para-muitos que serd implementada neste trabalho. A arquitetura um-para-muitos faz
basicamente um usudrio principal, que serda chamado de transmissor, faz diversas conexdes
peer-to-peer com usuarios diferentes, que serdo chamados de espectadores, e entdo o
transmissor transmite os mesmos fluxos de dados para todos os espectadores simultaneamente

(KARADOGAN, G. M. 2013).

2.5. Consideracoes Finais

Neste capitulo foram revisadas técnicas da area de telerobotica e sua relacdo com este
trabalho e o projeto do Rob6 Museu. Também foram apresentadas as terminologias mais
importantes para o trabalho e discutidas algumas das técnicas, protocolos e tecnologias usadas
para desenvolver uma aplicagdo de comunicagdo de audio, video e texto em tempo real,
utilizando a Internet como meio. No capitulo seguinte sera descrito o desenvolvimento deste

trabalho utilizando os elementos apresentados neste capitulo.

19

CAPITULO 3: DESENVOLVIMENTO DA

INTERFACE DE CONEXAO COM O ROBO

3.1. Consideracoes iniciais

Neste capitulo o desenvolvimento deste trabalho serd descrito em detalhes. Serdo
apresentados os passos de todo o processo de desenvolvimento junto aos resultados obtidos de
cada etapa do trabalho e discutir-se-d30 as falhas encontradas e subsequentes correcdes e
revisdes adotadas durante o desenvolvimento. Ao final, serdo discutidas as principais
dificuldades de execuc¢ao e limitacdes do trabalho desenvolvido e serdo sintetizadas as li¢des

aprendidas durante o decorrer deste projeto.

3.2. Projeto

Este trabalho visa construir uma aplicacdo web que possa ser utilizada como interface
para controlar um robd remotamente e tenha suporte para reproducdo ao vivo de video. Para
isso, primeiramente ¢ preciso definir toda a arquitetura da comunicacdo entre multiplos
usudrios € o robd, os usuarios utilizando a aplicacdo web por meio de um navegador de
internet, ¢ o robo conectado a rede Wi-Fi da instituicao.

Na Figura 4 ¢ apresentada a arquitetura geral da aplicacdo que foi desenvolvida, ela ¢
dividida em 3 modulos principais: (i) o computador do usuario que se conectara por meio de
um navegador com o servidor central e em seguida com o computador de interface do robo;
(i1) o servidor web central que estard servindo a aplicagdo em Node.js e as paginas HTML
para o usudrio e para a interface utilizando o protocolo HTTPS, a aplicacdo Node.js sera
responsavel por fazer a troca de sinais do protocolo ICE entre o usuario e a interface; (iii) a
interface por sua vez também se conectara com o servidor central e depois com o usuario
utilizando um navegador web, e apds completa a sinalizagdo descrita no protocolo ICE serd

estabelecida a conexao peer-to-peer com o usudrio utilizando o WebRTC.

20

Figura 4: Arquitetura Simplificada da Aplicacio.

Estabelece a conexéo e

gerencia a sessao Rede Local da Instituicao

Servidor Web -7 R
NGINX “ =

Aplicacéio em Node.js

/
Navegador Navegador 7

Irobot

Video e Audio

Comandos

Interface
Computador

Video e Audio Processados

Comunicagdo P2P em tempo real com

A
WebRTC Comandos
Processados

3.3. Desenvolvimento da Interface Proposta

Nesta se¢dao serdao descritos os moddulos apresentados na secao anterior com mais

detalhes, e também as etapas do processo de desenvolvimento da aplicagdo como um todo.

3.3.1. Definicdo da Arquitetura e das Tecnologias

Existem diversos métodos diferentes de se fazer a conex@o entre duas maquinas pela
internet, portanto o passo inicial € decidir qual desses métodos é o mais apropriado para este
trabalho. Para isso ¢ preciso definir as caracteristicas mais criticas, as quais o método de

comunicagdo escolhido deve garantir para o sucesso da aplicagao.

Esta primeira parte do desenvolvimento do projeto exige o estudo extensivo das
tecnologias atuais e entdo a realizacdo de testes para a comparacdo entre os meétodos
estudados para a definicdo mais aceitavel da arquitetura. Primeiramente foi escolhido utilizar
uma conexao peer-to-peer entre o usudrio e a interface do robd, esta solugdo garante uma
menor laténcia na comunicagdo comparada com a outra solugdo considerada de utilizar o
servidor central para transmitir toda a comunicacdo entre os usuarios. A proposta de utilizar
um servidor para transmitir os fluxos de audio e video foi testada localmente em uma rede
privada e utilizando o protocolo Real-Time Messaging Protocol (RTMP). Mesmo os dados

ndo passando pela Internet foi obtida uma laténcia de aproximadamente 10 segundos, o que

21

foi considerado alta demais para garantir uma boa experiéncia de usudrio. Isso se deve ao fato
do usudrio ter que receber a imagem da camera do robo, identificar um caminho a seguir e
controlar o robo para desviar de obstaculos e se aproximar do ponto de destino, uma laténcia
de 10 segundos poderia resultar em dificuldades no controle preciso do rob6. Em seguida foi
testada a solucdo peer-to-peer utilizando o protocolo WebRTC, e foi obtida uma laténcia
consistente abaixo de 1 segundo, considerada mais que satisfatoria seguindo as condi¢des de
sucesso determinadas nos objetivos deste trabalho.

Um artigo publicado por Melendez-Fernandez et al. (2017) no International Journal
of Advanced Robotic Systems propde uma arquitetura para telepresenca roboética pela Web
utilizando WebRTC para a comunicagdo, mostrando resultados praticos positivos. Segundo o
artigo, entre as vantagens da arquitetura apresentada estdo a compatibilidade
multi-plataforma, o uso de tecnologias open-source e uma interface simples e amigavel para
usudrios inexperientes, sem necessidade de instalacdo ou uso de softwares por parte do
usudrio, fora o proprio navegador web. Esta pesquisa apresentou uma arquitetura com a
maioria das caracteristicas desejadas no projeto do Robd Museu, e por este motivo ela serviu
de base para a implementacao deste trabalho.

Apos a escolha do método de conexdo, ¢ definida a arquitetura da aplicagdo como um
todo, baseada na arquitetura proposta por Melendez-Fernandez et al. (2017) e adaptando para
o uso do projeto Rob6é Museu, tendo em vista os casos de uso e os requisitos para se utilizar o
WebRTC. Como ilustrado na Figura 4, a arquitetura da aplicacdo ¢ composta por:

e Um servidor web remoto NGINX que servird a aplicagdo em NodeJS contendo
uma pagina para os usuarios acessarem e o usudrio principal controlar o robo, e
outra pagina especifica para ser acessada pela interface do robd para transmitir
os fluxos de audio e video e receber os comandos do usuario. A aplicagao
também serd responsavel por repassar os sinais do protocolo ICE entre o
usudrio e a interface necessarios para estabelecer a conexao peer-to-peer entre
eles. E importante ressaltar que os fluxos de dados, tanto de audio e video do
robo, quanto os comandos do usuario nao serdao transmitidos pelo servidor,
entdo mesmo se a conexao com o servidor for perdida, a conexdo peer-to-peer
¢ mantida normalmente, e o servidor ndo terd como visualizar os dados que
estdo sendo trocados pelos usuarios € o robo.

e Um computador conectado a mesma rede local do robd via Wi-Fi, que servira

como interface e processara e repassara tanto os comandos recebidos do

22

usuario para o robd, quanto o fluxo de dados de 4udio e video, vindos da
camera e microfone do robd, para o usuario. E recomendado que este
computador tenha uma conexdo rapida e estavel com a Internet. E possivel que
seja preciso instalar neste computador um software de terceiros para poder
capturar os fluxos de dados vindos da cAmera do robd, como o OBS Studio'’,
mas isso depende do modelo da camera instalada no robd e estd além do
escopo deste trabalho.

e O robd moével que sera controlado. Este projeto serd baseado na montagem
apresentada na pagina do GitLab do projeto Robé Museu®, que no caso se
trata de um robd movel controlado por um microcontrolador ESP32*' e uma
camera [P montada em um suporte fixo. A ESP32 e a cdmera estardo
conectados via Wi-Fi na mesma rede que o computador usado para a interface.
A camera IP enviard sua gravagdo para o computador da interface e a ESP32
recebera os comandos dele por esta conexdo Wi-Fi.

e O computador do usudrio que ird acessar a pagina web. Por essa pagina serao
realizadas todas as acOes necessarias, desde estabelecer a conexdao, como
também reproduzir o video e audio em tempo-real € mandar os comandos para
o rob0. Serd necessario que o computador do usuario possua uma boa conexao
com a internet para garantir a menor laténcia possivel, e acessar a pagina por
meio de um navegador atualizado que suporte o WebRTC. Hoje em dia, os

navegadores mais comumente utilizados possuem suporte para o WebRTC.

3.3.2. Configuraciao do Servidor Web

Definida a arquitetura da aplicacdo, o proximo passo ¢ a implementagao da mesma.
No primeiro momento o servidor foi a preocupacao inicial, a solugdo foi utilizar um servidor
j& estabelecido e em funcionamento, que ¢ utilizado para servir a pagina do projeto de
extensdo Principia Robds na Escola®. O servidor do Principia é fornecido pelo Instituto de

Ciéncias Matematicas e de Computacao (ICMC) da USP, e roda atualmente a versdo do

% "Open Broadcaster Software | OBS." https://obsproject.com/.
0 Repositorio Robd Museu - Eduardo do Valle Simdes - GitLab

https:/gitlab.com/simoesusp/robo-museu.
21 "ESP32 Wi-Fi & Bluetooth MCU I Espressif Systems."

https://www.espressif.com/en/products/socs/esp32.
22 "Principia - Projeto Robos na Escola - USP." https://principia.icme.usp.br/.

23

https://principia.icmc.usp.br/
https://www.espressif.com/en/products/socs/esp32
https://gitlab.com/simoesusp/robo-museu
https://obsproject.com/

Ubuntu 16.04* e o servidor web NGINX Open Source. Como o servidor ja estava em
funcionamento e servindo uma pagina em sua porta de acesso padrido, o Unico trabalho
necessario foi o de configurar o servidor NGINX para atuar como um proxy reverso*’, para
isso foram adicionadas dentro do arquivo de configuracdo do NGINX ‘sites-available/default’

as linhas apresentadas no Codigo Fonte apresentado na Figura 5.

Figura 5: Configuracio de proxy-reverso do servidor.

location /robo-museu/ {

y_set_header X-Real-IP $remote_
~ X-Forwarded-For $pr
" X-Forwarded-Proto eme;
" Host frnh:::St;
lers on;

7.0.0.1:4000/;

ebSockets
nl1l.1;
proxy_set_header Upgrade $http_upgrade;
r_set_header Connection $connection_upgrade;

ocation
rincipia.icmc. .b obo-museu/socket.

ocation /w {
y_pass https rincipia.icmc. . obo-museu/watch. js;

ocation /robot/broadcas
proxy_pass https rincipia.icmc. .br/robo-museu/robot/broadcast. js;

ocation /robot/broadcast-bundle.js {

proxy_pass https rincipia.icmc. .br/robo-museu/robot/broadcast-bundle. js;
1
location / es.css {

yv_pass https://principia.icmc. .br/robo-museu/styles.css;
1
J

Assim as requisicdes para para o enderego ‘https://principia.icmc.usp.br/robo-museu’
serdo redirecionadas para a porta 4000 do servidor, esta foi a porta escolhida para o servidor
da aplicagdo, todas as requisi¢des enviadas para ela serdo recebidas e respondidas pelo
servidor web executando em Node.JS, cujo codigo se encontra no arquivo server.js>.

Com o servidor funcionando e preparado, a proxima etapa da implementagdo ¢

construir a aplicagao principal em Node.js.

% "Ubuntu 16.04 LTS (Xenial Xerus)." https://ubuntu.com/16-04.

"Proxy Reverso"
https://www.profissionaisti.com.br/proxy-reverso-uma-seguranca-a-mais-para-seu-ambiente/.

% Arquivo server.js
https://gitlab.com/simoesusp/robo-museu/-/blob/master/MURILO/robot-remote-interface/server.js.

24

https://gitlab.com/simoesusp/robo-museu/-/blob/master/MURILO/robot-remote-interface/server.js
https://www.profissionaisti.com.br/proxy-reverso-uma-seguranca-a-mais-para-seu-ambiente/
https://ubuntu.com/16-04

3.3.3. Implementacido da Aplicacio Node.js

A aplicacdo Node.js em si pode ser dividida em trés partes, como os modulos deste
trabalho, definidas pelos arquivos de cdédigo JavaScript usados pela aplicagcdo. Todos os
arquivos de codigo descritos neste trabalho estdo disponiveis publicamente no repositorio do
projeto Robd Museu®® no Gitlab sob a licenga Open Source MIT?. Estes arquivos sdo: (i) o
arquivo server.js, rodando no servidor, que cuidara da troca de informagdes necessarias para
estabelecer a conexdo peer-to-peer entre o usuario € o controlador do robo; (i) o arquivo
watch.js, o qual serd carregado como um script na pagina HTML do usudrio para obter os
comandos inseridos pelo mesmo nos elementos HTML da péagina, e converté-los em
mensagens que serdo enviadas para o servidor ou para o controlador do robo, e o cddigo
também sera responsavel por receber os dados enviados pelo robd e exibi-los para o usuario; e
por fim (iii) o arquivo broadcast.js, que serd utilizado na pagina acessada pelo controlador do
robd, responsavel pela troca de mensagens com o servidor, enviar os dados de audio e video
para o usuario, ¢ também processar ¢ depois transmitir os comandos do usuario para o
microcontrolador do robo. Lembrando que o codigo responsavel por interpretar os comandos
e controlar os motores, usado pelo microcontrolador, ndo faz parte do escopo deste projeto.

A Figura 6 ilustra um caso de uso em que o usuario e o controlador do robd

estabelecem com sucesso uma conexao WebRTC, utilizando o servidor como intermediario.

Figura 6: Caso de uso de sucesso de conexao.

Server.js

7 - Conexdo estabelecida

Pagina do usuario Pagina do rob6

%6 Repositorio da aplicagdo - GitLab

https:/gitlab.com/simoesusp/robo-museu/-/tree/mastert/MURILO/robot-remote-interface.
27 "The MIT License | Open Source Initiative." https://opensource.org/licenses/MIT.

25

https://opensource.org/licenses/MIT
https://gitlab.com/simoesusp/robo-museu/-/tree/master/MURILO/robot-remote-interface

No arquivo de codigo server.js foram utilizados os seguintes méodulos obtidos pelo
Node Package Manager (NPM). Express.js*®, que é Framework para o desenvolvimento de
aplicagcdes web para Node.js e ¢ utilizado para servir as paginas HTML para os usudrios e
para a interface do robd ao executar o codigo do server.js pelo Node.js. O médulo HTTPS®,
que ¢ utilizado para criar o servidor com o protocolo HTTP utilizando TLS/SSL para
certificar a seguranca, o website principia.icmc.usp.br no qual esta aplicacdo estd sendo
servida ja utiliza o protocolo HTTPS, portanto a aplicacao deste trabalho fara uso dos mesmos
certificados de seguranga fornecidos pela Autoridade Certificadora (CA) Let’s Encrypt®. O
moddulo Socket.io, apresentado no Capitulo 2, tem como fungdo principal implementar o
protocolo WebSocket que ¢ utilizado pelos usudrios e pela interface do robo para enviarem a
sinalizagdo ICE e outras informacgdes importantes para o servidor. O Codigo Fonte
apresentado na Figura 7, ¢ um exemplo de como ¢ utilizado o Socket.io nesta aplicagdo, o
comando ‘socket.on()’ cria uma fun¢@o assincrona que espera por uma mensagem da interface
pelo WebSocket com o titulo “mainWatcher”, e entdo ao receber uma mensagem com este
titulo o servidor repassa a mensagem para o usuario cujo id € igual ao id que foi passado na
mensagem da interface. Esta troca de mensagens em especifico tem a fungdo de avisar a
pagina do usudrio que este se trata de um usuario principal, e sabendo disso, a pdgina HTML

mostrard na tela o painel de comandos do robd, como ¢ visivel na Figura 8.

Figura 7: Exemplo em cédigo de uso do WebSocket no server.js.

socket.on("mainkWatcher”, (id, message)

console._log("new main watcher");
socket.to(id).emit("mainWatcher”, socket.id, message);

28 "Express - framework de aplicativo da web Node.js." https://expressis.com/pt-br/.
2 "HTTPS | Node.js v17.1.0 Documentation." https://nodejs.org/api/https.html.
3 "ISRG CP v3.1 - Let's Encrypt." https://letsencrypt.org/documents/isrg-cp-v3.1/.

26

https://letsencrypt.org/documents/isrg-cp-v3.1/
https://nodejs.org/api/https.html
https://expressjs.com/pt-br/

Figura 8: Tela do usudrio principal conectada ao robé.

\: Desconectar |

|. Ativar Audio |

| Em frente |

| virar para Esquerda:\ | virar para direita |

\:Andar para tra‘s:\

Escreva uma n 1: | Message text

| Enviar |

Apds implementado o codigo do servidor o préximo passo foi implementar os codigos
das paginas de usuario e da interface. O arquivo de codigo watch.js € carregado como um
script HTML na pégina fornecida para os usudrios. A pagina em si possui apenas um botao de
‘Conectar’ na tela. Ao clicar nesse botdo o codigo em watch.js tomara conta de fazer toda a
sinalizacdo necessaria para estabelecer a conexdo, comeg¢ando pelo envio de uma mensagem
para o servidor pelo WebSocket que se deseja conectar. A partir deste ponto, desde que a
interface esteja conectada, o usuario e a interface trocardo os sinais de ‘oferta’ e ‘resposta’
definidas pelo protocolo ICE usando o servidor central como meio de comunicacdo até que a
conexado seja estabelecida. Caso a interface ndo tenha ainda um usudrio principal conectado,
este titulo sera garantido para o novo usuario da forma que foi discutida no paragrafo anterior.
Com a conexao WebRTC estabelecida, o video fornecido pela interface sera apresentado para
0 usudrio em tempo real, caso o usuario obtenha o titulo de ‘main watcher’ o painel de

comandos estara visivel como aparece na Figura 8.

27

Figura 9: Tela da interface do robé.

IP Local do Robé [192.168.10.10 | Porta [3080
Comando manual: ‘."example'f‘speed=22 || Enviar ‘
Audio source: \ Padrio - Grupo de microfones (Tecnologia Intel® Smart Sound) V|

Video source: | Integrated Webcam (0cd5:671f) v

Conectado com 1 usulirios / main watcher id= skFpx2@ysxKhlTmGAAAB

Mensagens recebidas:
parar-completo
parar-completo

parar-completo

J& o arquivo de cdédigo broadcast.js ¢ carregado como um script na pagina HTML
acessada pela interface, como demonstrado na Figura 9. Nela o controlador podera visualizar
o video que sera compartilhado, a quantidade atual de usuarios conectados, o id do usuéario
principal e uma lista com os comandos recebidos do usuario. Todas essas informacgdes sao
atualizadas pelo codigo broadcast.js em tempo real. E necessario que o controlador preencha
dois dos campos de texto manualmente, um com o endereco IP local do robd e outro com a
porta que o microcontrolador do robo utiliza para receber os comandos por Wi-Fi, essas
informacdes serdo usadas para enviar os comandos para o microcontrolador. O controlador
ainda podera selecionar as fontes de dudio e video caso haja mais de uma. O cédigo da
interface sempre ird esperar um usudrio tentar se conectar. Quando isso acontecer, o codigo
em broadcast.js ficara responsavel por estabelecer a conexdo WebRTC com o usudrio

automaticamente.

28

3.4. Dificuldades e Limitacoes

Os navegadores mais modernos suportam por padrao uma interface JavaScript para
gerenciar as conexdes WebRTC, com métodos para obter candidatos ICE, usar servidores
STUN e TURN, criar Data Channels, etc. Esta foi a técnica utilizada na implementagdo deste
trabalho. Apesar de existirem modulos no repositério do NPM que dizem simplificar a
implementagdo do WebRTC, foi preferivel utilizar os métodos padrdes, pois em testes
realizados com os moédulos do NPM, todos apresentaram alguma desvantagem para a
aplicacdo desenvolvida.

Ao implementar a parte do cddigo responsavel por enviar os comandos do computador
da interface para o microcontrolador do robo, o autor deparou-se com um problema - o
moddulo necessario para enviar as requisigdes HTTP com os comandos ndo era disponibilizado
para ser utilizado de maneira client-side, ou seja, apenas o codigo do servidor poderia enviar
requisi¢des HTTP automaticamente e nao o navegador. A solug¢do foi utilizar um software
chamado Browserify’' para tornar isso possivel. O Browserify analisa o cddigo
recursivamente e agrupa todos os moédulos importados no coédigo em um Unico arquivo
chamado de bundle. Ao servir este bundle como um script na pagina no lugar do broadcast.js,
o navegador consegue interpretar todo o cddigo em JavaScript, incluindo o médulo HTTPS
que era necessario para fazer as requisi¢des para o endereco de IP do microcontrolador. O
controlador so tera o trabalho de liberar o envio de requisi¢des ao IP do microcontrolador pelo
navegador, j4 que a maioria dos navegadores classifica uma requisicio HTTPS para um IP
local como ndo segura, pois ndo ¢ possivel garantir a autenticidade dos certificados TLS/SSL.

O préximo passo € o de testes da aplicacdo. Nesta etapa os arquivos de codigo foram

t32

clonados direto no servidor usando um repositorio Git** remoto pela plataforma GitLab®, e

foram executados com o Node.js. Também foi criada uma pequena aplicagdo JavaScript que
simula a presenga do robo conectado a rede local do controlador, disponivel no mesmo
repositorio do projeto Robd Museu com o nome de ‘command-receiver’, esta aplicagio
apenas recebe os comandos enviados pelo controlador e os exibe no terminal, e seu objetivo

era possibilitar os testes mesmo sem a presenc¢a de um robd real.

3! "browserify/browserify - GitHub." https://github.com/browserify/browserify.

32 "yser-manual Documentation - Git." https:/git-scm.com/docs/user-manual.

33 "GitLab: Iterate faster, innovate together." https://about.gitlab.com/.

3* Aplicagdo ‘command-receiver’
https://gitlab.com/simoesusp/robo-museu/-/tree/master/MURILO/command-receiver.

29

https://gitlab.com/simoesusp/robo-museu/-/tree/master/MURILO/command-receiver
https://about.gitlab.com/
https://git-scm.com/docs/user-manual
https://github.com/browserify/browserify

A aplicagdo foi testada tanto localmente, quanto remotamente. Foram encontradas
algumas falhas de conex@o por WebSockets durante os testes quando o usudrio e o
controlador do robd se encontravam em redes privadas separadas. Mas por conta das
funcionalidades do modulo Socket.io a aplicagdo funciona normalmente mesmo com as falhas
no WebSocket, ja reconectando automaticamente ou substituindo o protocolo e para um
HTTP long polling.

O ultimo passo do projeto ¢ o de andlise dos resultados dos testes e corre¢ao de falhas.
As falhas criticas foram resolvidas, enquanto algumas ndo-criticas foram deixadas para
trabalhos futuros por falta de tempo. Mais testes s3o necessarios para garantir a robustez da
solucdo apresentada. Por fim, apesar dos problemas de conexao do WebSocket apresentados,
a aplicacdo conseguiu conectar-se e transmitir os dados com sucesso entre o computador do
usuario ¢ o “rob0” (simulagdo de um robo no caso deste trabalho), com uma laténcia média
observada de aproximadamente 1 segundo, tudo utilizando uma conexdao segura para 0s

padrdes atuais utilizando protocolos HTTPS, WebSockets Secure (WSS) e WebRTC.

3.5. Consideracoes Finais

Neste capitulo discutiu-se o desenvolvimento deste trabalho, a implementacdo do
codigo da aplicagdo, e também as dificuldades e problemas encontrados ao longo do projeto.
Foi construida uma aplicagdo para a interface entre usudrio e robo através da web, utilizando
protocolos seguros, e foram realizados testes de funcionalidade da aplicagdo. No capitulo

seguinte, serdo apresentadas as conclusdes deste trabalho.

30

CAPITULO 4: CONCLUSAO

Com os testes realizados ao final do processo de desenvolvimento foram obtidos
resultados satisfatorios: a aplicagdo desenvolvida alcangou os objetivos de conectar multiplos
usudrios a transmissdo de dudio e video do robé com uma laténcia média dentro das
expectativas determinadas para a aplicagdo (menor que 2 segundos), sendo apenas um
usudrio, intitulado como principal, que pode enviar os comandos para o robd, que sao
corretamente recebidos pela interface e encaminhados para o microcontrolador do robd por
meio da rede Wi-Fi.

Apesar do resultado positivo na funcionalidade da aplicagdo, o trabalho nao conseguiu
atingir o nivel de qualidade grafica esperado no inicio do desenvolvimento para a interface de
usuario nas duas paginas HTML apresentadas. Este problema ocorreu devido ao fato de
surgirem dificuldades durante o processo de desenvolvimento que demandaram maior atengao
para outras areas, para economizar tempo, foi decidido implementar uma interface de usudrio

simples apenas para demonstrar as funcionalidades do projeto.

4.1. Contribuicoes

Uma das contribui¢des deste trabalho ¢ a de fornecer um modelo de aplicacdo de
codigo aberto, que podera ser utilizado para a implementacdo de sistemas de telepresenca de
maneira simples e acessivel. Principalmente como sistema para o projeto do Robd Museu,
para o qual este trabalho foi inicialmente moldado.

Outra contribuicdio ¢ o aprendizado documentado neste trabalho sobre a
implementagdo dos métodos de conexdo utilizados com tecnologias de codigo aberto
disponiveis atualmente, os desafios da area de telepresenga e toda a sua complexidade.
Destaca-se a importancia de, ao inicio do processo de desenvolvimento de um trabalho,
definir um cronograma com todas as etapas do processo reservando um periodo de tempo
realista especialmente para corre¢do de erros e cobrir eventuais dificuldades que atrasem o

desenvolvimento.

31

4.2. Trabalhos Futuros

Por conta de sua natureza, este trabalho apenas pode ser considerado completo quando
combinado com outros modulos em um sistema maior com testes em situacoes reais, como
por exemplo, compondo o sistema de telepresenca robotica em um museu. Entretanto, a
aplica¢do desenvolvida neste trabalho ainda precisa de ajustes e correcdes antes de poder ser
integrada de forma satisfatoria em um sistema completo, como uma interface mais amigavel
para o usuario. Além disso, ¢ necessario que outros sistemas sejam implementados para
complementar a aplicacdo apresentada. Portanto, propde-se os seguintes passos com o fim de
chegar a implementacdo completa de um sistema robusto de telepresenga robotica:

1. Implementacdo de um sistema de cadastro e autenticacao de usuarios;

2. Implementacdo de um sistema de agendamento de acesso ao robo;

3. Melhoria do design da interface para uma melhor experiéncia de usuario;

4. Testes de integracdo e de campo do sistema completo, com o robé em um local

apropriado, com usudrios pertencentes ao publico alvo que se deseja atingir.

32

REFERENCIAS

UNESCO. Pesquisa de percepciao dos impactos da COVID-19 nos setores cultural
e criativo do Brasil: resumo. UNESCO Office in Brasilia, 2020. Disponivel em:
<https://unesdoc.unesco.org/ark:/48223/pf0000375069> Acesso em 16 nov. 2021.

MINSKY, Marvin. TELEPRESENCE. OMNI Magazine, Junho 1980. Disponivel
em: <https://web.media.mit.edu/~minsky/papers/Telepresence.html> Acesso em 16 nov.
2021.

KRISTOFFERSSON, A.; CORADESCHI, S.; LOUTFI, A. A Review of Mobile
Robotic Telepresence, Advances in Human-Computer Interaction, vol. 2013, Article ID
902316, 17 pages, 2013. Disponivel em: <https://doi.org/10.1155/2013/902316> Acesso em
18 nov. 2021.

MARAFA, N. A.; FILHO, W. B. V. DESENVOLVIMENTO DE UM ROBO
MOVEL DE TELEPRESENCA DESTINADO AO APOIO A PESSOAS COM
DEFICIENCIAS LOCOMOTORAS, 12° Congresso Brasileiro de Inovagio e Gestdo de
Desenvolvimento de Produto, Blucher Engineering Proceedings, Volume 2, 2019, Pages
599-614, ISSN 2357-7592. Disponivel em:
<www.proceedings.blucher.com.br/article-details/desenvolvimento-de-um-rob-mvel-de-telepr
esena-destinado-ao-apoio-a-pessoas-com-deficincias-locomotoras-33590> Acesso em 20 nov.

2021.

SINGH, V.; LOZANO, A. A.; OTT, J. Performance Analysis of Receive-Side
Real-Time Congestion Control for WebRTC, 2013 20th International Packet Video
Workshop, 2013, pp. 1-8, doi: 10.1109/PV.2013.6691454.

MELENDEZ-FERNANDEZ, F.; GALINDO, C.; GONZALEZ-JIMENEZ, J. A
web-based solution for robotic telepresence. International Journal of Advanced Robotic
Systems, November-December, 2017, pages 1-19. Disponivel em:
<https://doi.org/10.1177/1729881417743738> Acesso em 12 nov. 2021.

SCHILLING, K.; ROTH, H.; LIEB, R. Teleoperations of rovers. From Mars to
education, ISIE '97 Proceeding of the IEEE International Symposium on Industrial
Electronics, 1997, pp. SS257-SS262 vol.1, doi: 10.1109/ISIE.1997.651772.

SHERIDAN, T. B. Telerobotics, Automatica, Volume 25, Issue 4, 1989, Pages
487-507, ISSN 0005-1098. Disponivel em: <https://doi.org/10.1016/0005-1098(89)90093-9>
Acesso em 20 nov. 2021.

33

https://unesdoc.unesco.org/ark:/48223/pf0000375069
https://web.media.mit.edu/~minsky/papers/Telepresence.html
https://doi.org/10.1155/2013/902316
http://www.proceedings.blucher.com.br/article-details/desenvolvimento-de-um-rob-mvel-de-telepresena-destinado-ao-apoio-a-pessoas-com-deficincias-locomotoras-33590
http://www.proceedings.blucher.com.br/article-details/desenvolvimento-de-um-rob-mvel-de-telepresena-destinado-ao-apoio-a-pessoas-com-deficincias-locomotoras-33590
https://doi.org/10.1177/1729881417743738
https://doi.org/10.1016/0005-1098(89)90093-9

DONNELLY, R.; JOHNS, J. Recontextualising remote working and its HRM in the
digital economy: An integrated framework for theory and practice, The International Journal
of Human Resource Management, 2021, 32:1, 84-105, DOI:
10.1080/09585192.2020.1737834.

ELIAS, G.; LOBATO, L. C. Arquitetura e Protocolos de Rede TCP-IP, 2. ed. Rio
de Janeiro: RNP/ESR, 2013. 414 p. 56-62.

DURUMERIC, Z.; KASTEN, J.; BAILEY, M.; HALDERMAN, J. A. Analysis of the

HTTPS Certificate Ecosystem, Proc. of the 13th Internet Measurement Conference
(IMC’13), Oct. 2013.

IETF (Internet Engineering Task Force). The WebSocket Protocol, Request for
Comments: 6455, Category: Standards Track, ISSN: 2070-1721. Dezembro de 2011.
Disponivel em: <https://datatracker.ietf.org/doc/html/rfc6455> Acesso em 22 nov. 2021.

SHIRKY, C. What Is P2P... And What Isn’t, The O'Reilly Network, Novembro
2000. Disponivel em: <http://anet.sourceforge.net/cached/p2p/13/472 . html> Acesso em 19
nov. 2021.

IETF (Internet Engineering Task Force). Interactive Connectivity Establishment
(ICE): A Protocol for Network Address Translator (NAT) Traversal, Request for Comments:
8445, Category: Standards Track, ISSN: 2070-1721. Julho de 2018. Disponivel em:
<https://datatracker.ietf.org/doc/html/rfc8445> Acesso em 19 nov. 2021.

NTWG (Network Working Group). Session Traversal Utilities for NAT (STUN),

Request for Comments: 5389, Category: Standards Track. Outubro de 2008. Disponivel em:
<https://datatracker.ietf.org/doc/html/rfc5389> Acesso em 19 nov. 2021.

SRISURESH, P.; FORD, B.; KEGEL, D. State of Peer-to-Peer (P2P)
Communication across Network Address Translators (NATs), Network Working Group,
Request for Comments: 5128, Category: Informational. Mar¢o de 2008. Disponivel em:
<https://www.ietf.org/rfc/rfc5128.txt> Acesso em 20 nov. 2021.

IETF (Internet Engineering Task Force). Traversal Using Relays around NAT
(TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN), Request for
Comments: 5766, Category: Standards Track, ISSN: 2070-1721. Abril de 2010. Disponivel
em: <https://datatracker.ietf.org/doc/html/rfc5766> Acesso em 19 nov. 2021.

NETCRAFT. October 2021 Web Server Survey, 2021. Disponivel em:
<https://news.netcraft.com/archives/2021/10/15/october-202 1 -web-server-survey.html>

Acesso em 23 nov. 2021.

34

https://doi.org/10.1080/09585192.2020.1737834
https://doi.org/10.1080/09585192.2020.1737834
https://datatracker.ietf.org/doc/html/rfc6455
http://anet.sourceforge.net/cached/p2p/13/472.html
https://datatracker.ietf.org/doc/html/rfc8445
https://datatracker.ietf.org/doc/html/rfc5389
https://www.ietf.org/rfc/rfc5128.txt
https://datatracker.ietf.org/doc/html/rfc5766
https://news.netcraft.com/archives/2021/10/15/october-2021-web-server-survey.html

PRAKASH, P;; BIJU, R.; KAMATH, M. Performance analysis of process driven
and event driven web servers, 2015 IEEE 9th International Conference on Intelligent
Systems and Control (ISCO), 2015, pp. 1-7, doi: 10.1109/ISC0O.2015.7282230.

CHANIOTIS, I. K.; KYRIAKOU, KI.D.; TSELIKAS, N.D. Is Node.js a viable
option for building modern web applications? A performance evaluation study.
Computing 97, 1023—-1044 (2015). https://doi.org/10.1007/s00607-014-0394-9

KARADOGAN, G. M. Evaluating WebSocket and WebRTC in the Context of a
Mobile Internet of Things Gateway, Master of Science Thesis, KTH Royal Institute of
Technology Stockholm, Sweden. 2013.

W3C (The World Wide Web Consortium), WebRTC 1.0: Real-Time
Communication Between Browsers, W3C Recommendation 26 January 2021. Disponivel

em: <https://www.w3.org/TR/webrtc/> Acesso em 20 nov. 2021.

35

https://www.w3.org/TR/webrtc/

