
UNIVERSIDADE DE SÃO PAULO
Instituto de Ciências Matemáticas e de Computação

Departamento de Sistemas de Computação

Interface de controle de navegação de robô para

presença remota em museu

Murilo Luz Stucki

São Carlos - SP

1



Interface de controle de navegação de robô para presença

remota em museu

Murilo Luz Stucki

Orientador: Eduardo do Valle Simões

​
​

Monografia referente ao projeto de conclusão de curso

dentro do escopo da disciplina SSC0670 – Projeto de

Formatura I do Departamento de Sistemas de

Computação do Instituto de Ciências Matemáticas e de

Computação – ICMC-USP para obtenção do título de

Engenheiro de Computação.

Área de Concentração: Engenharia de Software para
Controle de Robôs Móveis

2



USP – São Carlos
23 de Novembro de 2021

3



“Não é nossa função controlar

todas as marés do mundo, mas

sim fazer o que pudermos para

socorrer os tempos em que

estamos inseridos” - Gandalf,

O Branco.

(J. R. R. Tolkien)

4



Agradecimentos

Agradeço à minha família, colegas, irmãos e todos aqueles que acreditaram no meu

potencial e me motivaram a chegar até aqui, à todos que ofereceram-me suporte nos

momentos mais difíceis e de dúvida da minha vida.

5



RESUMO

Diante de um cenário de pandemia e escassez de recursos, o maior desafio na

administração de museus e espaços culturais é a manutenção do seu funcionamento perante

medidas de distanciamento social. Este trabalho explora uma das soluções que surgiu dentro

do Instituto de Ciências Matemáticas e de Computação (ICMC) para ressignificar o papel do

seu Museu de Computação durante a pandemia, a solução, que levou o nome de Robô Museu,

se trata da implementação de um sistema robótico para a realização de visitas remotas ao

museu. Neste trabalho é proposta e implementada uma arquitetura para o sistema de interface

web para o projeto Robô Museu, utilizando-se as tecnologias mais recomendadas para a área

de telepresença robótica. Foi desenvolvida uma aplicação Node.js utilizando a tecnologia

WebRTC (Web Real Time Communication), a aplicação serve duas páginas HTML diferentes,

uma para os usuários visitantes, e outra para um computador que servirá de interface entre a

Internet e o microcontrolador do robô. A aplicação foi testada utilizando um servidor NGINX

no endereço ‘https://principia.icmc.usp.br/robo-museu/’. Os testes realizados mostram que a

aplicação é capaz de conectar em tempo real os usuários com a interface e transmitir um fluxo

de vídeo/áudio da interface para múltiplos usuários. A aplicação também é capaz de transmitir

um fluxo de comandos de um usuário principal para a interface, que por sua vez transmite

estes comandos para o endereço IP do microcontrolador do robô conectado à rede Wi-Fi.

6



SUMÁRIO

CAPÍTULO 1: INTRODUÇÃO 8
1.1. Contextualização e Motivação 8
1.2. Objetivos 10
1.3. Organização do Trabalho 10

CAPÍTULO 2: REVISÃO BIBLIOGRÁFICA 11
2.1. Considerações iniciais 11
2.2. Telepresença e Teleoperação Robótica 11
2.3. Técnicas de Transmissão de Dados pela Internet 13

2.3.1. HTTP/HTTPS 13
2.3.2. WebSockets 14
2.3.3. Peer-to-Peer e ICE 14
2.3.4. STUN e TURN 15

2.4. Bibliotecas e Softwares de Código Aberto 17
2.4.1. NGINX 17
2.4.2. Node.js 17
2.4.3. Socket.IO 18
2.4.4. WebRTC 18

2.5. Considerações Finais 19

CAPÍTULO 3: DESENVOLVIMENTO DA INTERFACE DE CONEXÃO COM O
ROBÔ 20

3.1. Considerações iniciais 20
3.2. Projeto 20
3.3. Desenvolvimento da Interface Proposta 21

3.3.1. Definição da Arquitetura e das Tecnologias 21
3.3.2. Configuração do Servidor Web 23
3.3.3. Implementação da Aplicação Node.js 25

3.4. Dificuldades e Limitações 29
3.5. Considerações Finais 30

CAPÍTULO 4: CONCLUSÃO 31
4.1. Contribuições 31
4.2. Considerações sobre o Curso de Graduação 32
4.3. Trabalhos Futuros 33

REFERÊNCIAS 34

7



CAPÍTULO 1: INTRODUÇÃO

1.1. Contextualização e Motivação

A pandemia da Covid-19 impactou negativamente toda a sociedade mundial, o setor

cultural não foi exceção, a crise afetou a maioria das pessoas e das organizações que

trabalham neste setor, como aponta uma pesquisa da UNESCO (UNESCO, 2020). Entre os

problemas causados estava a impossibilidade de realizar visitas a museus, galerias, teatros e

outros espaços importantes para a sociedade por mais de um ano, e durante este período

muitas ideias surgiram para ajudar a manutenção destes espaços, inclusive dentro do Instituto

de Ciências Matemáticas e de Computação (ICMC) da Universidade de São Paulo (USP)

surgiram algumas ideias para serem implementadas no Museu de Computação1, uma delas foi

a de construir um robô que possa ser controlado remotamente e filme o ambiente a sua volta,

para que usuários assistam essas imagens em tempo real e sintam-se livres para explorar o

ambiente.

Rapidamente foi reconhecido o potencial do projeto do robô de acesso remoto, a ideia

transformou-se em utilizar o robô para que escolas públicas e outras instituições de ensino

pudessem fazer visitas remotamente em espaços de interesse da escola, principalmente

espaços em que a visita presencial é inviável. Portanto o objetivo do projeto intitulado Robô

Museu2 tornou-se desenvolver um robô móvel junto a uma plataforma de controle remoto, que

possa ser facilmente replicada e implementada por outras instituições, de forma a facilitar o

acesso remoto do público aos espaços de cultura, além de influenciar ativamente que alunos

de escola pública se interessem mais por atividades culturais e ensinar sobre tecnologia e

robótica. Este trabalho terá como foco a plataforma web que será usada para controlar o robô,

contribuindo com um protótipo para testes iniciais do robô, e até como base para futuras

implementações.

Para que uma experiência de telepresença seja eficaz ela precisa transmitir a sensação

do usuário de estar em um ambiente diferente (MINSKY, M., 1980), a vantagem de utilizar

robôs móveis para esta tarefa, além das câmeras e microfones, é dar ao usuário remoto a

possibilidade de se mover e interagir fisicamente com o ambiente por meio do robô

(KRISTOFFERSSON et al., 2013). Atualmente, a área de telepresença robótica cresce

2 Repositório Robô Museu por Eduardo do Valle Simões, https://gitlab.com/simoesusp/robo-museu.
1 "Museu de Computação Prof. Odelar Leite Linhares", https://mc.icmc.usp.br/.

8

https://gitlab.com/simoesusp/robo-museu
https://mc.icmc.usp.br/


rapidamente, e existem muitos exemplos de robôs para usos comerciais e também não

comerciais. Um exemplo é o uso de telepresença robótica para auxiliar pessoas com

deficiências locomotoras (MARAFA, N. A.; FILHO, W. B. V., 2019), e como grande parte

dos trabalhos atuais na área ele utiliza a API (Application Programming Interface) para

comunicação em tempo real entre navegadores chamada WebRTC3 (Web Real Time

Communication), Singh et al. (2013) produziram um artigo de análise da performance do

WebRTC e seus algoritmos de controle de congestão, e nos testes obtiveram latências de no

máximo 1 segundo para conexões congestionadas. Este trabalho faz uso de tecnologias atuais

já utilizadas na área para a criação de uma interface web de telepresença robótica

(MELENDEZ-FERNANDEZ et al, 2017), a diferença está em dois pontos, apresentados a

seguir, que derivam do caso específico em que se encontra o projeto do Robô Museu, e os

tipos de uso intencionados pelos seus idealizadores.

1. Criar uma aplicação na qual seja possível mais de um usuário remoto assistir a

transmissão do robô ao mesmo tempo, mas garantir que apenas um usuário

(usuário principal) possa mandar comandos para o robô. A definição do

usuário principal poderá ser feita por meio de um sistema de cadastro e

agendamento de horário.

2. Reduzir ao máximo a interação humana necessária localmente após a

instalação, no robô e no computador servindo de transmissor. Permitindo que

após o sistema estar devidamente instalado, um usuário remoto consiga

estabelecer uma conexão com o robô sem o auxílio de uma pessoa no local.

O primeiro ponto tem o intuito de aumentar o potencial uso educacional do sistema,

possibilitando por exemplo que uma classe de alunos em aulas remotas possam assistir a

transmissão juntos enquanto o professor controla o robô, ou também que usuários não

principais possam assistir a visita de um usuário principal em horários muito requisitados,

otimizando assim o uso do robô e melhorando a experiência do usuário. O segundo ponto visa

facilitar a manutenção do sistema pela instituição, reduzindo a necessidade de treinar e alocar

funcionários para operar o robô. E para o usuário visa diminuir o tempo necessário para

estabelecer a conexão com o robô. Tendo em vista os pontos apresentados, este trabalho

poderá contribuir com uma forma de implementação de telepresença robótica que melhor

atende a demanda de um espaço cultural, como um museu, estudar as técnicas e os desafios e

fomentar o debate acerca da área de telepresença robótica.

3 "WebRTC." https://webrtc.org/. Acessado em 23 nov.. 2021.

9

https://webrtc.org/


1.2. Objetivos

O objetivo deste trabalho é desenvolver uma aplicação web de código aberto,

utilizando tecnologias Open Source4 e com performance adequada às necessidades do projeto

Robô Museu, como Node.js5, NGINX6, WebRTC e HTML7. Esta aplicação deve ser capaz de

servir de interface entre um usuário inexperiente e um robô móvel. O intuito principal é o

usuário conseguir, de forma confortável e sem possuir conhecimento básico sobre robótica ou

computação, interagir com o robô e fazê-lo navegar por um espaço, enquanto o robô captura

imagens do ambiente e as transmite para o usuário em tempo real. A comunicação deve ser

feita de forma simples e com a menor latência possível entre o envio dos comandos e a

alteração da imagem na tela do usuário, isso para garantir uma melhor imersão para a pessoa

que está visitando o espaço por telepresença. Uma condição de sucesso baseado na latência

seria obter um número menor que 2 segundos, se aproximando dos resultados do trabalho de

Singh et al. (2013).

1.3. Organização do Trabalho

A organização deste trabalho consiste de 4 capítulos, sendo este o primeiro. O segundo

capítulo, REVISÃO BIBLIOGRÁFICA, apresentará revisões da terminologia básica da área,

explicações sobre as bibliotecas e projetos de código aberto relevantes e a literatura

relacionada a este projeto. No terceiro capítulo, DESENVOLVIMENTO DO TRABALHO, o

projeto será discutido em detalhes, serão apresentadas motivações de todas as escolhas feitas,

assim como a execução e os resultados do trabalho. Por fim, no quarto capítulo,

CONCLUSÃO, serão apresentadas as contribuições, os erros cometidos e outras conclusões

finais que o autor deste trabalho pôde alcançar a partir dos resultados obtidos. Todas as etapas

deste trabalho foram realizadas à distância pelo autor e seu orientador, o Prof. Eduardo do

Valle Simões, e sem a possibilidade de testar o sistema em situações reais, os resultados se

limitam aos obtidos em simulações. Os testes restantes, como o de integração com os outros

componentes do Robô Museu, poderão ser feitos futuramente quando todos os componentes

estiverem em etapas finais de desenvolvimento. Assim serão sugeridos os próximos passos e

trabalhos futuros que poderão ser derivados deste e também, ao final, feitas algumas

7 "HTML Standard", https://html.spec.whatwg.org/multipage/.
6 "NGINX.", https://nginx.org/en/.
5 "Node.js.", https://nodejs.org/en/about/.
4 "The Open Source Definition", https://opensource.org/docs/osd.

10

https://html.spec.whatwg.org/multipage/
https://nginx.org/en/
https://nodejs.org/en/about/
https://opensource.org/docs/osd


considerações sobre o curso de graduação no qual o autor está atualmente matriculado a partir

de sua visão pessoal, e sobre a relação deste trabalho com o curso e o que foi aprendido

durante o desenvolvimento do projeto.

CAPÍTULO 2: REVISÃO BIBLIOGRÁFICA

2.1. Considerações iniciais

Neste capítulo serão apresentadas revisões da literatura existente relacionada a área de

telepresença robótica, conceitos e técnicas avaliados durante o desenvolvimento do trabalho,

terminologias importantes para a compreensão deste projeto e a metodologia adotada para a

implementação do sistema. São apresentadas explicações das funcionalidades das bibliotecas

de código aberto mais importantes e também sobre as ferramentas Open Source empregadas

na solução apresentada neste trabalho.

2.2. Telepresença e Teleoperação Robótica

O termo teleoperação, traduzido do inglês teleoperation, é o nome dado a qualquer

tipo de operação realizada em uma máquina por um controlador remoto, pode ser tão simples

quanto mudar o canal em uma televisão com um controle remoto, ou mais complexa como

controlar um robô na superfície de Marte a partir de uma estação espacial na órbita do planeta

(SCHILLING et al., 1997). Atenta-se para o fato de que o termo teleoperação não

necessariamente tem ligação com a robótica, apenas quando a máquina controlada se trata de

um sistema robótico, por este motivo é comum encontrar definições deste termo como a área

que engloba outros tópicos como a telepresença e a telerobótica, este último foi definido por

T. B. Sheridan (1989) como tratando-se da teleoperação usada em sistemas robóticos

semi-autônomos, dotados de sensores e inteligência artificial para realizar tarefas informadas

por um supervisor remoto. A partir da análise da Figura 1 nota-se a semelhança entre o

conceito de telerobótica, apresentado por T. B. Sheridan, e a descrição do uso do projeto Robô

Museu, sendo a Internet a barreira entre o controlador e o robô. Não coincidentemente este

11



trabalho está inserido na área da telerobótica, e faz uso tanto de conceitos derivados da

telepresença.

Figura 1: Conceito de Telerobótica

Fonte: T. B. SHERIDAN, Telerobotics (1989)

O termo telepresença, traduzido do inglês telepresence, não é tão bem definido quanto

os apresentados anteriormente e pode ser encontrado em diversas áreas acadêmicas com

significados variados. Na área de foco deste trabalho, a robótica, é usado com o significado de

transmitir a sensação de estar em outro ambiente com o auxílio de robôs, e foi popularizado

por Marvin Minsky em 1980, e em seu artigo ele descreve a telepresença como uma evolução

da teleoperação, de forma que ao passo em que as tecnologias de controle remoto avançam,

mais imersivos seus sistemas se tornam. Segundo Minsky (1980), esse deve ser o objetivo da

área de teleoperações para que possam resolver problemas atuais de tarefas que põem em

risco o trabalhador que poderão ser feitas por robôs usando a telepresença, e até trabalhos

comuns poderiam ser feitos remotamente, eliminando a necessidade de locomoção do

trabalhador e que criaria um mercado mais livre. A tecnologia e o mundo evoluíram diferente

do que Minsky previu a 40 anos atrás, mas parte do que foi dito por ele é válido também nos

dias de hoje, e podemos dizer que o modelo de economia remota está começando a tomar

forma e mudanças na área estão acontecendo rapidamente. A discussão sobre os impactos

positivos e negativos no trabalho e nas relações humanas causados pelos avanços da

telepresença foi iniciada por Minsky e outros acadêmicos da época e continua até hoje,

ganhando maior importância a cada dia (DONNELLY, R.; JOHNS, J. 2021). O projeto

descrito neste trabalho faz uso do conceito de telepresença na tentativa de desenvolver uma

interface imersiva, dentro das limitações do robô e da conexão que serão utilizadas no projeto

final do Robô Museu.

12



2.3. Técnicas de Transmissão de Dados pela Internet

A Internet tornou- se uma ferramenta indispensável para a sociedade atual, pela qual é

possível compartilhar informações entre computadores no mundo todo conectados à rede

global, utilizando uma coleção de protocolos TCP/IP. Os protocolos definem as regras gerais

de comunicação entre dois computadores ou processos interligados pela rede, assim garantem

que eles “falem a mesma língua” e consigam processar corretamente os dados recebidos pela

conexão (ELIAS, G.; LOBATO, L. C. 2013, p. 56-62). Os protocolos da família TCP/IP são

divididos por funcionalidade entre 4 camadas de abstração, Aplicação, Transporte, Rede e

Interface de Rede. Para este trabalho são utilizados protocolos dentro da família TCP/IP que

garantem baixa latência na transmissão dos dados e que são reconhecidos pela maioria dos

navegadores de uso comum, como Google Chrome, Firefox, Safari, etc. Os protocolos mais

importantes para o entendimento do trabalho são descritos nos subtópicos a seguir.

2.3.1. HTTP/HTTPS

Hypertext Transfer Protocol (HTTP)8 é um protocolo utilizado para transmissão de

documentos chamados de Hypermedia, como por exemplo páginas HTML, imagens e

arquivos JavaScript. Basicamente ele segue o modelo cliente-servidor, no qual o cliente abre

uma conexão e envia uma requisição para o servidor. O servidor, então, envia uma resposta

com os arquivos requisitados pelo cliente ou com uma mensagem de erro (ELIAS, G.;

LOBATO, L. C. 2013, p. 377). Utilizando um navegador para fazer as requisições, o usuário

verá os arquivos de resposta apresentados em uma interface amigável que esconde toda a

troca de mensagens com o servidor e processos internos necessários para exibir certos

arquivos corretamente, como códigos HTML (GARSIEL, T.; IRISH, P., 2011).

HyperText Transfer Protocol Secure (HTTPS)9 é basicamente a versão criptografada

do protocolo HTTP e utiliza protocolos de segurança de camada de transporte, o SSL ou o

TLS, proporcionando uma conexão segura entre cliente e servidor, atualmente a segurança de

dados é um tópico muito discutido e se torna cada dia mais importante, ao passo que as

pessoas estão cada vez mais conectadas, por conta disso a maioria dos sites estão adotando o

protocolo HTTPS ao invés do HTTP (DURUMERIC, Z. et al., 2013).

9 "HTTPS - Glossário - MDN Web Docs." https://developer.mozilla.org/pt-BR/docs/Glossary/https.
8 "HTTP - MDN Web Docs." https://developer.mozilla.org/en-US/docs/Web/HTTP/.

13

https://developer.mozilla.org/pt-BR/docs/Glossary/https
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview


2.3.2. WebSockets

Utilizando os protocolos HTTP/HTTPS para fazer a comunicação entre cliente e

servidor é sempre necessário que o cliente envie uma requisição para o servidor para que ele

possa receber uma resposta, mas para aplicações que necessitam de uma resposta do servidor

em tempo real essa configuração não é a ideal. O protocolo WebSocket10 foi desenvolvido

para estes casos. Ele permite estabelecer uma comunicação bidirecional entre o cliente e o

servidor por uma única conexão TCP/IP. O cliente envia uma requisição HTTP/HTTPS com o

cabeçalho UPGRADE, se o servidor oferecer suporte para o WebSocket ele envia uma

resposta com “101 Switching Protocols”, dessa forma a conexão full-duplex é estabelecida e

ambos podem enviar mensagens por esta conexão a qualquer momento alterando os

protocolos HTTP/HTTPS para o WebSocket, até que um dos lados feche a conexão. Dessa

forma, em uma aplicação web em que são necessários envios constantes de dados ou

atualizações em tempo real, o cliente não precisa enviar requisições para o servidor para obter

esses dados, o servidor pode simplesmente enviar a mensagem quando houver necessidade

(IETF, 2011).

2.3.3. Peer-to-Peer e ICE

Para uma aplicação que necessita a transferência de dados com baixa latência entre

dois clientes, utilizar um servidor central para repassar os dados usando o modelo

cliente-servidor pode ser muito lento e custar muitos recursos do servidor, nestes casos, e

como é o caso deste projeto, uma opção é usar o modelo peer-to-peer, ou seja, fazer com o

que os clientes estabeleçam uma conexão direta entre eles sem utilizar um servidor para

repassar os dados. Desta forma os clientes, que agora serão chamados de peers, enviam os

dados diretamente para o endereço um do outro (SHIRKY, C. 2000).

Um dos problemas da conexão peer-to-peer é garantir a segurança e a confiança dos

dados, por conta disso, atualmente, a maioria dos roteadores de redes privadas dificulta

conexões desse tipo entre máquinas locais e máquinas fora da rede privada, por conta de um

método chamado network address translators (NATs), que altera o endereço IP da máquina

local para o endereço IP público do roteador, e então todos os dados endereçados para a rede

privada são controlados pelo roteador que retransmite para o endereço IP local correto, assim

10 "WebSocket – Wikipédia, a enciclopédia livre." https://pt.wikipedia.org/wiki/WebSocket. Acessado
em 23 nov.. 2021.

14

https://pt.wikipedia.org/wiki/WebSocket


o endereço privado interno das máquinas da rede não é exposto (ELIAS, G.; LOBATO, L. C.

2013, p. 137). Como um peer dentro de uma rede privada não tem acesso ao endereço público

da sua rede, ele não consegue informar ao outro peer fora da rede seu endereço correto para

estabelecer a conexão direta. Para solucionar este problema e também o problema de firewalls

que bloqueiam este tipo de conexão com peers não confiáveis, foi criada a técnica chamada

Interactive Connectivity Establishment (ICE), que utiliza os protocolos Session Traversal

Utilities for NAT (STUN) e Traversal Using Relays around NAT (TURN) para contornar as

barreiras criadas por redes privadas (IETF, 2018).

2.3.4. STUN e TURN

Session Traversal Utilities for NAT (STUN) é um protocolo cliente-servidor em que o

cliente, dentro de uma rede privada, envia uma requisição para o servidor na rede pública que

oferece o serviço de STUN, chamado de STUN Server, e então o servidor envia uma resposta

contendo informações sobre o tipo de NAT que a rede privada do cliente utiliza, o endereço de

IP e a porta públicos utilizados pelo NAT de sua rede que aceitem uma conexão peer-to-peer

(NTWG, 2008). Em posse dessa informação sobre si mesmo, o cliente pode seguir o

protocolo ICE e enviar esta informação como uma ‘oferta’ para uma outra máquina que

deseja-se estabelecer uma conexão peer-to-peer, este outro peer então deve utilizar o STUN

da mesma forma e enviar uma ‘resposta’ de volta para o peer inicial com as informações

sobre ele obtidas pelo STUN, e por fim cada peer poderá utilizar a informação recebida do

seu par para estabelecerem a conexão. A forma como a ‘oferta’ e a ‘resposta’ são trocadas não

é especificada pelo protocolo ICE, mas a recomendação é fazer esta troca de maneira segura e

criptografada, em muitas aplicações é utilizado um servidor web confiável para transmitir

estas informações.

Existem casos em que somente o STUN não é suficiente para contornar o NAT de

algumas redes, um dos exemplos é quando o NAT altera o mapeamento dos endereços locais

da rede privada dependendo do endereço do remetente da mensagem, e se o endereço do

remetente está presente na sua tabela interna de endereços confiáveis (SRISURESH, P. et al.,

2008, p. 4). Nestes casos é utilizado o protocolo Traversal Using Relays around NAT

(TURN), ele define o uso de servidores intermediários, chamados de TURN Servers, que irão

retransmitir a conexão entre os peers. Um peer que deseja utilizar um TURN Server deve

enviar uma requisição para o servidor que disponibiliza esse serviço, e então o servidor irá

responder com uma tupla, endereço de IP e porta, que o servidor deixará disponível para a

15



conexão peer-to-peer, esta tupla que será repassada para o outro peer como ‘oferta’ ou

‘resposta’, junto com outras informações definidas pelo protocolo ICE. Por fim, quando o

outro peer enviar alguma mensagem pela conexão, ele enviará a mensagem para o TURN

Server que então repassará a mensagem para o endereço do outro peer (IETF, 2010).

Figura 2: Exemplo de uso de STUN e TURN

Fonte: GUNAY MERT KARADOGAN, Evaluating WebSocket and WebRTC in the Context of a

Mobile Internet of Things Gateway (2013).

A Figura 2 apresenta um exemplo esquemático de como funcionam o STUN Server e

o TURN Server, ressaltando que os peers podem utilizar servidores de STUN diferentes e

como o servidor de TURN se encaixa entre a conexão dos peers. Utilizar servidores de TURN

pode acabar diminuindo o valor da principal vantagem de se utilizar uma conexão

peer-to-peer, que seria a redução da latência por não utilizar um intermediário, por conta

disso que o protocolo ICE define parâmetros para que só seja utilizado o TURN caso o

método com STUN não funcione.

16



2.4. Bibliotecas e Softwares de Código Aberto

Durante o processo de desenvolvimento deste trabalho, algumas bibliotecas e

ferramentas de software foram utilizadas para auxiliar na obtenção da aplicação final com

todos os requisitos necessários. As mais importantes para a solução obtida serão apresentadas

nessa seção, o resto dos softwares utilizados serão discutidos brevemente no Capítulo 3. Os

softwares aqui apresentados auxiliam na implementação dos aspectos chave da aplicação

apresentados nas seções anteriores.

2.4.1. NGINX

NGINX11 é um servidor HTTP gratuito e de código aberto, que também pode atuar

como um servidor de proxy reverso, que é quando um servidor é usado para retransmitir

requisições de clientes para outros servidores, muito usado por grandes websites para

balancear a carga dos servidores. O servidor NGINX utiliza uma arquitetura assíncrona

baseada em eventos, o que o torna uma solução escalável até para grandes websites com

muito tráfego, como por exemplo Netflix12, Hulu13 e Pinterest14. O servidor NGINX é um

software gratuito, Open Source e está entre os servidores web mais populares segundo

pesquisa mensal feita por NETCRAFT (2021), além de ser mais responsivo e escalável do

que seu maior competidor, o Apache Web Server15, segundo PRAKASH et al. (2015).

2.4.2. Node.js

Node.js16 é um software de código aberto e multiplataforma que define a si próprio

como um ambiente de execução de códigos JavaScript, ele foi introduzido em 2009 e desde

então ganhou popularidade para uso em aplicações server-side por sua velocidade,

simplicidade e natureza assíncrona. O Node.js usa como base a máquina virtual Google

Chrome V817 para compilar o código JavaScript, e a maior diferença de sua arquitetura para

outras tecnologias é o fato de executar o código em single-thread e ser event-driven, ou seja,

ele utiliza uma única thread para executar todas as requisições, e cada requisição é tratada

como um evento não-bloqueante. Outras tecnologias para o mesmo uso são multi-thread. Isso

17 "V8 JavaScript engine." https://v8.dev/docs.
16 "node/README.md - GitHub." https://github.com/nodejs/node/blob/master/README.md.
15 "The Apache HTTP Server Project." https://httpd.apache.org/.
14 "Pinterest - Brasil." https://br.pinterest.com/.
13 "Hulu" https://www.hulu.com/.
12 "Netflix" https://www.netflix.com/br/.
11 "NGINX Wiki" https://www.nginx.com/resources/wiki/.

17

https://v8.dev/docs
https://github.com/nodejs/node/blob/master/README.md
https://httpd.apache.org/
https://br.pinterest.com/
https://www.hulu.com/
https://www.netflix.com/br/
https://www.nginx.com/resources/wiki/


significa que a cada nova requisição uma nova thread é criada no servidor, consumindo mais

recursos (CHANIOTIS, I. K., 2015).

O Node.js também é amplamente utilizado por desenvolvedores web por utilizar a

linguagem JavaScript, que também é a linguagem padrão utilizada por aplicações web no

client-side e pode ser carregada em arquivos HTML, por conta disso a maioria dos

desenvolvedores da área já possui familiaridade com a linguagem, o que também simplifica o

desenvolvimento da aplicação, possibilitando o uso da mesma linguagem tanto no frontend

quanto no backend. Outra vantagem do Node.js é o seu gerenciador de pacotes Node Package

Manager (NPM)18, que além de gerenciar todos os múltiplos pacotes de software que uma

aplicação Node.js pode utilizar simultaneamente, o NPM também possui o maior repositório

de software do mundo, com mais de 1 milhão de pacotes de código aberto.

2.4.3. Socket.IO

Socket.IO é uma biblioteca de código aberto presente no repositório do NPM que

simplifica o uso do protocolo WebSockets entre cliente e servidor utilizando Node.js. Esta

biblioteca também oferece suporte para falhas na conexão WebSocket, substituindo o

protocolo automaticamente para um HTTP long polling caso a conexão por meio do

WebSocket não consiga ser estabelecida. Além disso, a Socket.IO permite que o cliente tente

se reconectar automaticamente caso a conexão seja perdida. Estas características trazem

confiabilidade para o software, além de simplificar o código da aplicação (KARADOGAN, G.

M. 2013, p. 19).

2.4.4. WebRTC

Web Real-Time Communication (WebRTC) é um projeto open source com o propósito

de possibilitar o desenvolvimento de aplicações em tempo real de qualidade em navegadores e

plataformas móveis, e também definir protocolos padrões para a comunicação. É uma

tecnologia já utilizada na área da telepresença robótica com sucesso

(MELENDEZ-FERNANDEZ et al, 2017). Ele permite a troca de dados em tempo real por

canais específicos de áudio, vídeo e mensagens, utilizando conexões peer-to-peer

estabelecidas pelo protocolo ICE. O WebRTC utiliza Interfaces de Programação de Aplicação

(APIs) para gerenciar a conexão peer-to-peer: (i) fazendo a escolha das técnicas mais

adequadas para fazer a conexão, como UDP ou TCP, usar ou não um TURN Server, entre

18 "npm." https://www.npmjs.com/.

18

https://www.npmjs.com/


outras, dependendo da configuração de cada peer; (ii) obtendo os fluxos de dados de áudio e

vídeo de cada usuário pelos navegadores; (iii) criando e gerenciando os diversos canais de

dados dentro da conexão para os fluxos de áudio e de vídeo e canais de dados arbitrários,

estes chamados de Data Channels (W3C, 2021).

Figura 3: Arquitetura do WebRTC

Fonte: GUNAY MERT KARADOGAN, Evaluating WebSocket and WebRTC in the Context of a

Mobile Internet of Things Gateway (2013).

A Figura 3 ilustra a arquitetura usual de uma aplicação utilizando WebRTC, os dois

peers necessitam de um servidor central para fazerem a sinalização, que se trata basicamente

da troca das informações descritas nos protocolos ICE, STUN e TURN necessárias para

estabelecer a conexão peer-to-peer. Um importante ponto para este trabalho é que o WebRTC

também suporta arquiteturas de comunicação diferentes da um-para-um, como a

um-para-muitos que será implementada neste trabalho. A arquitetura um-para-muitos faz

basicamente um usuário principal, que será chamado de transmissor, faz diversas conexões

peer-to-peer com usuários diferentes, que serão chamados de espectadores, e então o

transmissor transmite os mesmos fluxos de dados para todos os espectadores simultaneamente

(KARADOGAN, G. M. 2013).

2.5. Considerações Finais

Neste capítulo foram revisadas técnicas da área de telerobótica e sua relação com este

trabalho e o projeto do Robô Museu. Também foram apresentadas as terminologias mais

importantes para o trabalho e discutidas algumas das técnicas, protocolos e tecnologias usadas

para desenvolver uma aplicação de comunicação de áudio, vídeo e texto em tempo real,

utilizando a Internet como meio. No capítulo seguinte será descrito o desenvolvimento deste

trabalho utilizando os elementos apresentados neste capítulo.

19



CAPÍTULO 3: DESENVOLVIMENTO DA

INTERFACE DE CONEXÃO COM O ROBÔ

3.1. Considerações iniciais

Neste capítulo o desenvolvimento deste trabalho será descrito em detalhes. Serão

apresentados os passos de todo o processo de desenvolvimento junto aos resultados obtidos de

cada etapa do trabalho e discutir-se-ão as falhas encontradas e subsequentes correções e

revisões adotadas durante o desenvolvimento. Ao final, serão discutidas as principais

dificuldades de execução e limitações do trabalho desenvolvido e serão sintetizadas as lições

aprendidas durante o decorrer deste projeto.

3.2. Projeto

Este trabalho visa construir uma aplicação web que possa ser utilizada como interface

para controlar um robô remotamente e tenha suporte para reprodução ao vivo de vídeo. Para

isso, primeiramente é preciso definir toda a arquitetura da comunicação entre múltiplos

usuários e o robô, os usuários utilizando a aplicação web por meio de um navegador de

internet, e o robô conectado à rede Wi-Fi da instituição.

Na Figura 4 é apresentada a arquitetura geral da aplicação que foi desenvolvida, ela é

dividida em 3 módulos principais: (i) o computador do usuário que se conectará por meio de

um navegador com o servidor central e em seguida com o computador de interface do robô;

(ii) o servidor web central que estará servindo a aplicação em Node.js e as páginas HTML

para o usuário e para a interface utilizando o protocolo HTTPS, a aplicação Node.js será

responsável por fazer a troca de sinais do protocolo ICE entre o usuário e a interface; (iii) a

interface por sua vez também se conectará com o servidor central e depois com o usuário

utilizando um navegador web, e após completa a sinalização descrita no protocolo ICE será

estabelecida a conexão peer-to-peer com o usuário utilizando o WebRTC.

20



Figura 4: Arquitetura Simplificada da Aplicação.

3.3. Desenvolvimento da Interface Proposta

Nesta seção serão descritos os módulos apresentados na seção anterior com mais

detalhes, e também as etapas do processo de desenvolvimento da aplicação como um todo.

3.3.1. Definição da Arquitetura e das Tecnologias

Existem diversos métodos diferentes de se fazer a conexão entre duas máquinas pela

internet, portanto o passo inicial é decidir qual desses métodos é o mais apropriado para este

trabalho. Para isso é preciso definir as características mais críticas, as quais o método de

comunicação escolhido deve garantir para o sucesso da aplicação.

Esta primeira parte do desenvolvimento do projeto exige o estudo extensivo das

tecnologias atuais e então a realização de testes para a comparação entre os métodos

estudados para a definição mais aceitável da arquitetura. Primeiramente foi escolhido utilizar

uma conexão peer-to-peer entre o usuário e a interface do robô, esta solução garante uma

menor latência na comunicação comparada com a outra solução considerada de utilizar o

servidor central para transmitir toda a comunicação entre os usuários. A proposta de utilizar

um servidor para transmitir os fluxos de áudio e vídeo foi testada localmente em uma rede

privada e utilizando o protocolo Real-Time Messaging Protocol (RTMP). Mesmo os dados

não passando pela Internet foi obtida uma latência de aproximadamente 10 segundos, o que

21



foi considerado alta demais para garantir uma boa experiência de usuário. Isso se deve ao fato

do usuário ter que receber a imagem da câmera do robô, identificar um caminho a seguir e

controlar o robô para desviar de obstáculos e se aproximar do ponto de destino, uma latência

de 10 segundos poderia resultar em dificuldades no controle preciso do robô. Em seguida foi

testada a solução peer-to-peer utilizando o protocolo WebRTC, e foi obtida uma latência

consistente abaixo de 1 segundo, considerada mais que satisfatória seguindo as condições de

sucesso determinadas nos objetivos deste trabalho.

Um artigo publicado por Melendez-Fernandez et al. (2017) no International Journal

of Advanced Robotic Systems propõe uma arquitetura para telepresença robótica pela Web

utilizando WebRTC para a comunicação, mostrando resultados práticos positivos. Segundo o

artigo, entre as vantagens da arquitetura apresentada estão a compatibilidade

multi-plataforma, o uso de tecnologias open-source e uma interface simples e amigável para

usuários inexperientes, sem necessidade de instalação ou uso de softwares por parte do

usuário, fora o próprio navegador web. Esta pesquisa apresentou uma arquitetura com a

maioria das características desejadas no projeto do Robô Museu, e por este motivo ela serviu

de base para a implementação deste trabalho.

Após a escolha do método de conexão, é definida a arquitetura da aplicação como um

todo, baseada na arquitetura proposta por Melendez-Fernandez et al. (2017) e adaptando para

o uso do projeto Robô Museu, tendo em vista os casos de uso e os requisitos para se utilizar o

WebRTC. Como ilustrado na Figura 4, a arquitetura da aplicação é composta por:

● Um servidor web remoto NGINX que servirá a aplicação em NodeJS contendo

uma página para os usuários acessarem e o usuário principal controlar o robô, e

outra página específica para ser acessada pela interface do robô para transmitir

os fluxos de áudio e vídeo e receber os comandos do usuário. A aplicação

também será responsável por repassar os sinais do protocolo ICE entre o

usuário e a interface necessários para estabelecer a conexão peer-to-peer entre

eles. É importante ressaltar que os fluxos de dados, tanto de áudio e vídeo do

robô, quanto os comandos do usuário não serão transmitidos pelo servidor,

então mesmo se a conexão com o servidor for perdida, a conexão peer-to-peer

é mantida normalmente, e o servidor não terá como visualizar os dados que

estão sendo trocados pelos usuários e o robô.

● Um computador conectado à mesma rede local do robô via Wi-Fi, que servirá

como interface e processará e repassará tanto os comandos recebidos do

22



usuário para o robô, quanto o fluxo de dados de áudio e vídeo, vindos da

câmera e microfone do robô, para o usuário. É recomendado que este

computador tenha uma conexão rápida e estável com a Internet. É possível que

seja preciso instalar neste computador um software de terceiros para poder

capturar os fluxos de dados vindos da câmera do robô, como o OBS Studio19,

mas isso depende do modelo da câmera instalada no robô e está além do

escopo deste trabalho.

● O robô móvel que será controlado. Este projeto será baseado na montagem

apresentada na página do GitLab do projeto Robô Museu20, que no caso se

trata de um robô móvel controlado por um microcontrolador ESP3221 e uma

câmera IP montada em um suporte fixo. A ESP32 e a câmera estarão

conectados via Wi-Fi na mesma rede que o computador usado para a interface.

A câmera IP enviará sua gravação para o computador da interface e a ESP32

receberá os comandos dele por esta conexão Wi-Fi.

● O computador do usuário que irá acessar a página web. Por essa página serão

realizadas todas as ações necessárias, desde estabelecer a conexão, como

também reproduzir o vídeo e áudio em tempo-real e mandar os comandos para

o robô. Será necessário que o computador do usuário possua uma boa conexão

com a internet para garantir a menor latência possível, e acessar a página por

meio de um navegador atualizado que suporte o WebRTC. Hoje em dia, os

navegadores mais comumente utilizados possuem suporte para o WebRTC.

3.3.2. Configuração do Servidor Web

Definida a arquitetura da aplicação, o próximo passo é a implementação da mesma.

No primeiro momento o servidor foi a preocupação inicial, a solução foi utilizar um servidor

já estabelecido e em funcionamento, que é utilizado para servir a página do projeto de

extensão Principia Robôs na Escola22. O servidor do Principia é fornecido pelo Instituto de

Ciências Matemáticas e de Computação (ICMC) da USP, e roda atualmente a versão do

22 "Principia - Projeto Robôs na Escola - USP." https://principia.icmc.usp.br/.

21 "ESP32 Wi-Fi & Bluetooth MCU I Espressif Systems."
https://www.espressif.com/en/products/socs/esp32.

20 Repositório Robô Museu - Eduardo do Valle Simões - GitLab
https://gitlab.com/simoesusp/robo-museu.

19 "Open Broadcaster Software | OBS." https://obsproject.com/.

23

https://principia.icmc.usp.br/
https://www.espressif.com/en/products/socs/esp32
https://gitlab.com/simoesusp/robo-museu
https://obsproject.com/


Ubuntu 16.0423 e o servidor web NGINX Open Source. Como o servidor já estava em

funcionamento e servindo uma página em sua porta de acesso padrão, o único trabalho

necessário foi o de configurar o servidor NGINX para atuar como um proxy reverso24, para

isso foram adicionadas dentro do arquivo de configuração do NGINX ‘sites-available/default’

as linhas apresentadas no Código Fonte apresentado na Figura 5.

Figura 5: Configuração de proxy-reverso do servidor.

Assim as requisições para para o endereço ‘https://principia.icmc.usp.br/robo-museu’

serão redirecionadas para a porta 4000 do servidor, esta foi a porta escolhida para o servidor

da aplicação, todas as requisições enviadas para ela serão recebidas e respondidas pelo

servidor web executando em Node.JS, cujo código se encontra no arquivo server.js25.

Com o servidor funcionando e preparado, a próxima etapa da implementação é

construir a aplicação principal em Node.js.

25 Arquivo server.js
https://gitlab.com/simoesusp/robo-museu/-/blob/master/MURILO/robot-remote-interface/server.js.

24 "Proxy Reverso"
https://www.profissionaisti.com.br/proxy-reverso-uma-seguranca-a-mais-para-seu-ambiente/.

23 "Ubuntu 16.04 LTS (Xenial Xerus)." https://ubuntu.com/16-04.

24

https://gitlab.com/simoesusp/robo-museu/-/blob/master/MURILO/robot-remote-interface/server.js
https://www.profissionaisti.com.br/proxy-reverso-uma-seguranca-a-mais-para-seu-ambiente/
https://ubuntu.com/16-04


3.3.3. Implementação da Aplicação Node.js

A aplicação Node.js em si pode ser dividida em três partes, como os módulos deste

trabalho, definidas pelos arquivos de código JavaScript usados pela aplicação. Todos os

arquivos de código descritos neste trabalho estão disponíveis publicamente no repositório do

projeto Robô Museu26 no Gitlab sob a licença Open Source MIT27. Estes arquivos são: (i) o

arquivo server.js, rodando no servidor, que cuidará da troca de informações necessárias para

estabelecer a conexão peer-to-peer entre o usuário e o controlador do robô; (ii) o arquivo

watch.js, o qual será carregado como um script na página HTML do usuário para obter os

comandos inseridos pelo mesmo nos elementos HTML da página, e convertê-los em

mensagens que serão enviadas para o servidor ou para o controlador do robô, e o código

também será responsável por receber os dados enviados pelo robô e exibi-los para o usuário; e

por fim (iii) o arquivo broadcast.js, que será utilizado na página acessada pelo controlador do

robô, responsável pela troca de mensagens com o servidor, enviar os dados de áudio e vídeo

para o usuário, e também processar e depois transmitir os comandos do usuário para o

microcontrolador do robô. Lembrando que o código responsável por interpretar os comandos

e controlar os motores, usado pelo microcontrolador, não faz parte do escopo deste projeto.

A Figura 6 ilustra um caso de uso em que o usuário e o controlador do robô

estabelecem com sucesso uma conexão WebRTC, utilizando o servidor como intermediário.

Figura 6: Caso de uso de sucesso de conexão.

27 "The MIT License | Open Source Initiative." https://opensource.org/licenses/MIT.

26 Repositório da aplicação - GitLab
https://gitlab.com/simoesusp/robo-museu/-/tree/master/MURILO/robot-remote-interface.

25

https://opensource.org/licenses/MIT
https://gitlab.com/simoesusp/robo-museu/-/tree/master/MURILO/robot-remote-interface


No arquivo de código server.js foram utilizados os seguintes módulos obtidos pelo

Node Package Manager (NPM). Express.js28, que é Framework para o desenvolvimento de

aplicações web para Node.js e é utilizado para servir as páginas HTML para os usuários e

para a interface do robô ao executar o código do server.js pelo Node.js. O módulo HTTPS29,

que é utilizado para criar o servidor com o protocolo HTTP utilizando TLS/SSL para

certificar a segurança, o website principia.icmc.usp.br no qual esta aplicação está sendo

servida já utiliza o protocolo HTTPS, portanto a aplicação deste trabalho fará uso dos mesmos

certificados de segurança fornecidos pela Autoridade Certificadora (CA) Let’s Encrypt30. O

módulo Socket.io, apresentado no Capítulo 2, tem como função principal implementar o

protocolo WebSocket que é utilizado pelos usuários e pela interface do robô para enviarem a

sinalização ICE e outras informações importantes para o servidor. O Código Fonte

apresentado na Figura 7, é um exemplo de como é utilizado o Socket.io nesta aplicação, o

comando ‘socket.on()’ cria uma função assíncrona que espera por uma mensagem da interface

pelo WebSocket com o título “mainWatcher”, e então ao receber uma mensagem com este

título o servidor repassa a mensagem para o usuário cujo id é igual ao id que foi passado na

mensagem da interface. Esta troca de mensagens em específico tem a função de avisar a

página do usuário que este se trata de um usuário principal, e sabendo disso, a página HTML

mostrará na tela o painel de comandos do robô, como é visível na Figura 8.

Figura 7: Exemplo em código de uso do WebSocket no server.js.

30 "ISRG CP v3.1 - Let's Encrypt." https://letsencrypt.org/documents/isrg-cp-v3.1/.
29 "HTTPS | Node.js v17.1.0 Documentation." https://nodejs.org/api/https.html.
28 "Express - framework de aplicativo da web Node.js." https://expressjs.com/pt-br/.

26

https://letsencrypt.org/documents/isrg-cp-v3.1/
https://nodejs.org/api/https.html
https://expressjs.com/pt-br/


Figura 8: Tela do usuário principal conectada ao robô.

Após implementado o código do servidor o próximo passo foi implementar os códigos

das páginas de usuário e da interface. O arquivo de código watch.js é carregado como um

script HTML na página fornecida para os usuários. A página em si possui apenas um botão de

‘Conectar’ na tela. Ao clicar nesse botão o código em watch.js tomará conta de fazer toda a

sinalização necessária para estabelecer a conexão, começando pelo envio de uma mensagem

para o servidor pelo WebSocket que se deseja conectar. A partir deste ponto, desde que a

interface esteja conectada, o usuário e a interface trocarão os sinais de ‘oferta’ e ‘resposta’

definidas pelo protocolo ICE usando o servidor central como meio de comunicação até que a

conexão seja estabelecida. Caso a interface não tenha ainda um usuário principal conectado,

este título será garantido para o novo usuário da forma que foi discutida no parágrafo anterior.

Com a conexão WebRTC estabelecida, o vídeo fornecido pela interface será apresentado para

o usuário em tempo real, caso o usuário obtenha o título de ‘main watcher’ o painel de

comandos estará visível como aparece na Figura 8.

27



Figura 9: Tela da interface do robô.

Já o arquivo de código broadcast.js é carregado como um script na página HTML

acessada pela interface, como demonstrado na Figura 9. Nela o controlador poderá visualizar

o vídeo que será compartilhado, a quantidade atual de usuários conectados, o id do usuário

principal e uma lista com os comandos recebidos do usuário. Todas essas informações são

atualizadas pelo código broadcast.js em tempo real. É necessário que o controlador preencha

dois dos campos de texto manualmente, um com o endereço IP local do robô e outro com a

porta que o microcontrolador do robô utiliza para receber os comandos por Wi-Fi, essas

informações serão usadas para enviar os comandos para o microcontrolador. O controlador

ainda poderá selecionar as fontes de áudio e vídeo caso haja mais de uma. O código da

interface sempre irá esperar um usuário tentar se conectar. Quando isso acontecer, o código

em broadcast.js ficará responsável por estabelecer a conexão WebRTC com o usuário

automaticamente.

28



3.4. Dificuldades e Limitações

Os navegadores mais modernos suportam por padrão uma interface JavaScript para

gerenciar as conexões WebRTC, com métodos para obter candidatos ICE, usar servidores

STUN e TURN, criar Data Channels, etc. Esta foi a técnica utilizada na implementação deste

trabalho. Apesar de existirem módulos no repositório do NPM que dizem simplificar a

implementação do WebRTC, foi preferível utilizar os métodos padrões, pois em testes

realizados com os módulos do NPM, todos apresentaram alguma desvantagem para a

aplicação desenvolvida.

Ao implementar a parte do código responsável por enviar os comandos do computador

da interface para o microcontrolador do robô, o autor deparou-se com um problema - o

módulo necessário para enviar as requisições HTTP com os comandos não era disponibilizado

para ser utilizado de maneira client-side, ou seja, apenas o código do servidor poderia enviar

requisições HTTP automaticamente e não o navegador. A solução foi utilizar um software

chamado Browserify31 para tornar isso possível. O Browserify analisa o código

recursivamente e agrupa todos os módulos importados no código em um único arquivo

chamado de bundle. Ao servir este bundle como um script na página no lugar do broadcast.js,

o navegador consegue interpretar todo o código em JavaScript, incluindo o módulo HTTPS

que era necessário para fazer as requisições para o endereço de IP do microcontrolador. O

controlador só terá o trabalho de liberar o envio de requisições ao IP do microcontrolador pelo

navegador, já que a maioria dos navegadores classifica uma requisição HTTPS para um IP

local como não segura, pois não é possível garantir a autenticidade dos certificados TLS/SSL.

O próximo passo é o de testes da aplicação. Nesta etapa os arquivos de código foram

clonados direto no servidor usando um repositório Git32 remoto pela plataforma GitLab33, e

foram executados com o Node.js. Também foi criada uma pequena aplicação JavaScript que

simula a presença do robô conectado à rede local do controlador, disponível no mesmo

repositório do projeto Robô Museu com o nome de ‘command-receiver’34, esta aplicação

apenas recebe os comandos enviados pelo controlador e os exibe no terminal, e seu objetivo

era possibilitar os testes mesmo sem a presença de um robô real.

34 Aplicação ‘command-receiver’
https://gitlab.com/simoesusp/robo-museu/-/tree/master/MURILO/command-receiver.

33 "GitLab: Iterate faster, innovate together." https://about.gitlab.com/.
32 "user-manual Documentation - Git." https://git-scm.com/docs/user-manual.
31 "browserify/browserify - GitHub." https://github.com/browserify/browserify.

29

https://gitlab.com/simoesusp/robo-museu/-/tree/master/MURILO/command-receiver
https://about.gitlab.com/
https://git-scm.com/docs/user-manual
https://github.com/browserify/browserify


A aplicação foi testada tanto localmente, quanto remotamente. Foram encontradas

algumas falhas de conexão por WebSockets durante os testes quando o usuário e o

controlador do robô se encontravam em redes privadas separadas. Mas por conta das

funcionalidades do módulo Socket.io a aplicação funciona normalmente mesmo com as falhas

no WebSocket, já reconectando automaticamente ou substituindo o protocolo e para um

HTTP long polling.

O último passo do projeto é o de análise dos resultados dos testes e correção de falhas.

As falhas críticas foram resolvidas, enquanto algumas não-críticas foram deixadas para

trabalhos futuros por falta de tempo. Mais testes são necessários para garantir a robustez da

solução apresentada. Por fim, apesar dos problemas de conexão do WebSocket apresentados,

a aplicação conseguiu conectar-se e transmitir os dados com sucesso entre o computador do

usuário e o “robô” (simulação de um robô no caso deste trabalho), com uma latência média

observada de aproximadamente 1 segundo, tudo utilizando uma conexão segura para os

padrões atuais utilizando protocolos HTTPS, WebSockets Secure (WSS) e WebRTC.

3.5. Considerações Finais

Neste capítulo discutiu-se o desenvolvimento deste trabalho, a implementação do

código da aplicação, e também as dificuldades e problemas encontrados ao longo do projeto.

Foi construída uma aplicação para a interface entre usuário e robô através da web, utilizando

protocolos seguros, e foram realizados testes de funcionalidade da aplicação. No capítulo

seguinte, serão apresentadas as conclusões deste trabalho.

30



CAPÍTULO 4: CONCLUSÃO

Com os testes realizados ao final do processo de desenvolvimento foram obtidos

resultados satisfatórios: a aplicação desenvolvida alcançou os objetivos de conectar múltiplos

usuários à transmissão de áudio e vídeo do robô com uma latência média dentro das

expectativas determinadas para a aplicação (menor que 2 segundos), sendo apenas um

usuário, intitulado como principal, que pode enviar os comandos para o robô, que são

corretamente recebidos pela interface e encaminhados para o microcontrolador do robô por

meio da rede Wi-Fi.

Apesar do resultado positivo na funcionalidade da aplicação, o trabalho não conseguiu

atingir o nível de qualidade gráfica esperado no início do desenvolvimento para a interface de

usuário nas duas páginas HTML apresentadas. Este problema ocorreu devido ao fato de

surgirem dificuldades durante o processo de desenvolvimento que demandaram maior atenção

para outras áreas, para economizar tempo, foi decidido implementar uma interface de usuário

simples apenas para demonstrar as funcionalidades do projeto.

4.1. Contribuições

Uma das contribuições deste trabalho é a de fornecer um modelo de aplicação de

código aberto, que poderá ser utilizado para a implementação de sistemas de telepresença de

maneira simples e acessível. Principalmente como sistema para o projeto do Robô Museu,

para o qual este trabalho foi inicialmente moldado.

Outra contribuição é o aprendizado documentado neste trabalho sobre a

implementação dos métodos de conexão utilizados com tecnologias de código aberto

disponíveis atualmente, os desafios da área de telepresença e toda a sua complexidade.

Destaca-se a importância de, ao início do processo de desenvolvimento de um trabalho,

definir um cronograma com todas as etapas do processo reservando um período de tempo

realista especialmente para correção de erros e cobrir eventuais dificuldades que atrasem o

desenvolvimento.

31



4.2. Trabalhos Futuros

Por conta de sua natureza, este trabalho apenas pode ser considerado completo quando

combinado com outros módulos em um sistema maior com testes em situações reais, como

por exemplo, compondo o sistema de telepresença robótica em um museu. Entretanto, a

aplicação desenvolvida neste trabalho ainda precisa de ajustes e correções antes de poder ser

integrada de forma satisfatória em um sistema completo, como uma interface mais amigável

para o usuário. Além disso, é necessário que outros sistemas sejam implementados para

complementar a aplicação apresentada. Portanto, propõe-se os seguintes passos com o fim de

chegar à implementação completa de um sistema robusto de telepresença robótica:

1. Implementação de um sistema de cadastro e autenticação de usuários;

2. Implementação de um sistema de agendamento de acesso ao robô;

3. Melhoria do design da interface para uma melhor experiência de usuário;

4. Testes de integração e de campo do sistema completo, com o robô em um local

apropriado, com usuários pertencentes ao público alvo que se deseja atingir.

32



REFERÊNCIAS

UNESCO. Pesquisa de percepção dos impactos da COVID-19 nos setores cultural

e criativo do Brasil: resumo. UNESCO Office in Brasilia, 2020. Disponível em:

<https://unesdoc.unesco.org/ark:/48223/pf0000375069> Acesso em 16 nov. 2021.

MINSKY, Marvin. TELEPRESENCE. OMNI Magazine, Junho 1980. Disponível

em: <https://web.media.mit.edu/~minsky/papers/Telepresence.html> Acesso em 16 nov.

2021.

KRISTOFFERSSON, A.; CORADESCHI, S.; LOUTFI, A. A Review of Mobile

Robotic Telepresence, Advances in Human-Computer Interaction, vol. 2013, Article ID

902316, 17 pages, 2013. Disponível em: <https://doi.org/10.1155/2013/902316> Acesso em

18 nov. 2021.

MARAFA, N. A.; FILHO, W. B. V. DESENVOLVIMENTO DE UM ROBÔ

MÓVEL DE TELEPRESENÇA DESTINADO AO APOIO A PESSOAS COM

DEFICIÊNCIAS LOCOMOTORAS, 12º Congresso Brasileiro de Inovação e Gestão de

Desenvolvimento de Produto, Blucher Engineering Proceedings, Volume 2, 2019, Pages

599-614, ISSN 2357-7592. Disponível em:

<www.proceedings.blucher.com.br/article-details/desenvolvimento-de-um-rob-mvel-de-telepr

esena-destinado-ao-apoio-a-pessoas-com-deficincias-locomotoras-33590> Acesso em 20 nov.

2021.

SINGH, V.; LOZANO, A. A.; OTT, J. Performance Analysis of Receive-Side

Real-Time Congestion Control for WebRTC, 2013 20th International Packet Video

Workshop, 2013, pp. 1-8, doi: 10.1109/PV.2013.6691454.

MELENDEZ-FERNANDEZ, F.; GALINDO, C.; GONZALEZ-JIMENEZ, J. A

web-based solution for robotic telepresence. International Journal of Advanced Robotic

Systems, November-December, 2017, pages 1-19. Disponível em:

<https://doi.org/10.1177/1729881417743738>  Acesso em 12 nov. 2021.

SCHILLING, K.; ROTH, H.; LIEB, R. Teleoperations of rovers. From Mars to

education, ISIE '97 Proceeding of the IEEE International Symposium on Industrial

Electronics, 1997, pp. SS257-SS262 vol.1, doi: 10.1109/ISIE.1997.651772.

SHERIDAN, T. B. Telerobotics, Automatica, Volume 25, Issue 4, 1989, Pages

487-507, ISSN 0005-1098. Disponível em: <https://doi.org/10.1016/0005-1098(89)90093-9>

Acesso em 20 nov. 2021.

33

https://unesdoc.unesco.org/ark:/48223/pf0000375069
https://web.media.mit.edu/~minsky/papers/Telepresence.html
https://doi.org/10.1155/2013/902316
http://www.proceedings.blucher.com.br/article-details/desenvolvimento-de-um-rob-mvel-de-telepresena-destinado-ao-apoio-a-pessoas-com-deficincias-locomotoras-33590
http://www.proceedings.blucher.com.br/article-details/desenvolvimento-de-um-rob-mvel-de-telepresena-destinado-ao-apoio-a-pessoas-com-deficincias-locomotoras-33590
https://doi.org/10.1177/1729881417743738
https://doi.org/10.1016/0005-1098(89)90093-9


DONNELLY, R.; JOHNS, J. Recontextualising remote working and its HRM in the

digital economy: An integrated framework for theory and practice, The International Journal

of Human Resource Management, 2021, 32:1, 84-105, DOI:

10.1080/09585192.2020.1737834.

ELIAS, G.; LOBATO, L. C. Arquitetura e Protocolos de Rede TCP-IP, 2. ed. Rio

de Janeiro: RNP/ESR, 2013. 414 p. 56-62.

DURUMERIC, Z.; KASTEN, J.; BAILEY, M.; HALDERMAN, J. A. Analysis of the

HTTPS Certificate Ecosystem, Proc. of the 13th Internet Measurement Conference

(IMC’13), Oct. 2013.

IETF (Internet Engineering Task Force). The WebSocket Protocol, Request for

Comments: 6455, Category: Standards Track, ISSN: 2070-1721. Dezembro de 2011.

Disponível em: <https://datatracker.ietf.org/doc/html/rfc6455> Acesso em 22 nov. 2021.

SHIRKY, C. What Is P2P… And What Isn’t, The O'Reilly Network, Novembro

2000. Disponível em: <http://anet.sourceforge.net/cached/p2p/13/472.html> Acesso em 19

nov. 2021.

IETF (Internet Engineering Task Force). Interactive Connectivity Establishment

(ICE): A Protocol for Network Address Translator (NAT) Traversal, Request for Comments:

8445, Category: Standards Track, ISSN: 2070-1721. Julho de 2018. Disponível em:

<https://datatracker.ietf.org/doc/html/rfc8445> Acesso em 19 nov. 2021.

NTWG (Network Working Group). Session Traversal Utilities for NAT (STUN),

Request for Comments: 5389, Category: Standards Track. Outubro de 2008. Disponível em:

<https://datatracker.ietf.org/doc/html/rfc5389> Acesso em 19 nov. 2021.

SRISURESH, P.; FORD, B.; KEGEL, D. State of Peer-to-Peer (P2P)

Communication across Network Address Translators (NATs), Network Working Group,

Request for Comments: 5128, Category: Informational. Março de 2008. Disponível em:

<https://www.ietf.org/rfc/rfc5128.txt> Acesso em 20 nov. 2021.

IETF (Internet Engineering Task Force). Traversal Using Relays around NAT

(TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN), Request for

Comments: 5766, Category: Standards Track, ISSN: 2070-1721. Abril de 2010. Disponível

em: <https://datatracker.ietf.org/doc/html/rfc5766> Acesso em 19 nov. 2021.

NETCRAFT. October 2021 Web Server Survey, 2021. Disponível em:

<https://news.netcraft.com/archives/2021/10/15/october-2021-web-server-survey.html>

Acesso em 23 nov. 2021.

34

https://doi.org/10.1080/09585192.2020.1737834
https://doi.org/10.1080/09585192.2020.1737834
https://datatracker.ietf.org/doc/html/rfc6455
http://anet.sourceforge.net/cached/p2p/13/472.html
https://datatracker.ietf.org/doc/html/rfc8445
https://datatracker.ietf.org/doc/html/rfc5389
https://www.ietf.org/rfc/rfc5128.txt
https://datatracker.ietf.org/doc/html/rfc5766
https://news.netcraft.com/archives/2021/10/15/october-2021-web-server-survey.html


PRAKASH, P.; BIJU, R.; KAMATH, M. Performance analysis of process driven

and event driven web servers, 2015 IEEE 9th International Conference on Intelligent

Systems and Control (ISCO), 2015, pp. 1-7, doi: 10.1109/ISCO.2015.7282230.

CHANIOTIS, I. K.; KYRIAKOU, KI.D.; TSELIKAS, N.D. Is Node.js a viable

option for building modern web applications? A performance evaluation study.

Computing 97, 1023–1044 (2015). https://doi.org/10.1007/s00607-014-0394-9

KARADOGAN, G. M. Evaluating WebSocket and WebRTC in the Context of a

Mobile Internet of Things Gateway, Master of Science Thesis, KTH Royal Institute of

Technology Stockholm, Sweden. 2013.

W3C (The World Wide Web Consortium), WebRTC 1.0: Real-Time

Communication Between Browsers, W3C Recommendation 26 January 2021. Disponível

em: <https://www.w3.org/TR/webrtc/> Acesso em 20 nov. 2021.

35

https://www.w3.org/TR/webrtc/

